在Linux系统编程和运维中,进程间通信(IPC)是一个重要的概念。为了有效地管理和监控这些IPC资源,Linux提供了多种工具和命令,其中lsipc就是其中之一。然而,需要注意的是,标准的Linux发行版中可能并没有直接名为lsipc的命令,但通常我们提到的lsipc是指ipcs命令的一个特定用法或者某个Linux发行版提供的工具,用于列出系统中的IPC设施信息。
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
信号量的概念参见这里。 与消息队列和共享内存一样,信号量集也有自己的数据结构: struct semid_ds { struct ipc_perm sem_perm; /* Ownership a
当我们对Oracle进行安装部署时,需要按照相关要求修改OS内核参数,下面对Oracle按照部署时需要修改的相关内核参数进行简单介绍。
zabbix_agentd [10555]: cannot create Semaphore: [28] No space left on device
函数原型:int semop(int semid, struct sembuf *sops, unsigned nsops);
我们使用过windows的都知道,当一个程序被卡死的时候不管怎样都没反应,这样我们就可以打开任务管理器直接强制性的结束这个进程,这个方法的实现就是和Linux上通过生成信号和捕获信号来实现相似的,运行过程中进程捕获到这些信号做出相应的操作使最终被终止。
UNIX/Linux 是多任务的操作系统,通过多个进程分别处理不同事务来实现,如果多个进程要进行协同工作或者争用同一个资源时,互相之间的通讯就很有必要了
socket缓冲区大小:/proc/sys/net/core/wmem_default or rmem_default
用于进程间传递信号的一个整数值。在信号量上只有三种操作可以进行:初始化,P操作和V操作,这三种操作都是原子操作。
作为微服务架构系统的入口,毫无疑问,Zuul的并发性能直接决定了整个系统的并发性能。本文结合前几篇文章的内容,在云服务器中部署了包含Eureka Server,Zuul等组件的1.0版本的微服务架构,并进行单点部署Zuul的压力测试,对其并发性能一探究竟。
对于信号量我们并不陌生。信号量在计算机科学中是一个很容易理解的概念。本质上,信号量就是一个简单的整数,对其进行的操作称为PV操作。进入某段临界代码段就会调用相关信号量的P操作;如果信号量的值大于0,该值会减1,进程继续执行。相反,如果信号量的值等于0,该进程就会等待,直到有其它程序释放该信号量。释放信号量的过程就称为V操作,通过增加信号量的值,唤醒正在等待的进程。
突然间发现zabbix 挂了,咋发现的呢?报警的世界突然安静了,你就会觉得不妥了。这是运维人员的通病,有报警嫌烦,没报警心里会不安。 1,图形界面上确实显示zabbix server is not running 2,排查zabbix server 日志 tail /var/log/zabbix/zabbix_server.log 发现有如下报警:
网关的大部分工作是请求转发,属于IO密集型的应用,我们要在有限的资源的情况下结合公司实际请求场景做调优。
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
除了原子操作,中断屏蔽,自旋锁以及自旋锁的衍生锁之外,在Linux内核中还存在着一些其他同步互斥的手段。
信号量,或称信号灯,其原理是一种数据操作锁的概念,本身不具备数据交换的功能,它负责协调各个进程,保证保证两个或多个关键代码段不被并发调用,确保公共资源的合理使用。信号量分为单值和多值两种。
本文介绍了Linux信号量、POSIX信号量、Linux条件变量和Linux线程同步基本概念,并通过代码示例展示了如何使用这些技术进行线程同步。
默认情况下,Spring Boot 使用 Tomcat 来作为内嵌的 Servlet 容器,可以将 Web 服务器切换到 Undertow 来提高应用性能,Undertow 是红帽公司开发的一款基于 NIO 的高性能 Web 嵌入式服务器
PostgreSQL某些时候会耗尽操作系统的各种资源限制,当同一个系统上运行着多个拷贝的服务器或在一个非常大的安装中时尤其如此。本节解释了PostgreSQL使用的内核资源以及你可以采取的用于解决内核资源消耗相关问题的步骤。
对于进程间通信,想必管道大家再熟悉不过了,对于管道这种通信方式,其实是对底层代码的一种复用,linux工程师借助类似文件缓冲区的内存空间实现了管道,其实也算偷了一个小懒,随着linux的发展,linux正式推出了System V来专门进行进程间通信,它和管道的本质都是一样的,都是让不同的进程看到同一份资源。
Linux 的同步机制不断发展完善。从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁。这些同步机制的发展伴随Linux从单处理器到对称多处理器的过渡;
管道是一种特殊的文件,它不属于某一种文件系统,而是一种独立的文件系统,是只存在于内存中的文件,本质是内核的一块缓冲。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。管道是单向的、先进先出的、无结构的、固定大小字节流,它把一个进程的标准输出和另一个进程的标准输入连接在一起。
Linux下进程间通信-共享内存 – 码到城攻共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式
信号量(semaphore)本质上是一个计数器,用于多进程对共享数据对象的读取,它和管道有所不同,它不以传送数据为主要目的,它主要是用来保护共享资源(信号量也属于临界资源),使得资源在一个时刻只有一个进程独享。 在信号量进行PV操作时都为原子操作(因为它需要保护临界资源)。
工作中的难点问题正是我们知识技术栈全谱查漏补缺的最佳机遇,有问题不可怕,all in、死磕就完事了,哈哈哈~
2.P操作(信号量值减一) 3.V操作(信号量值加一) 2和3步骤函数为: int semop(int semid ,struct sembuf *_sops ,size_t _nsops);
文章主要介绍了在Linux系统中,如何利用自旋锁来实现线程之间的同步和互斥。主要包括了自旋锁的定义、工作原理、使用方式和注意事项,并通过实例介绍了如何在C语言中实现自旋锁。
生产环境中我们的配置中心肯定是不能随随便便被人访问的,我们可以加上适当的保护机制,由于微服务是构建在 Spring Boot 之上,所以整合 Spring Security是最方便的方式。 1、在 springcloud config server 项目添加依赖:
想必各位读者在看了昨天的文章分享之后,大概对线程有了一个比较清楚的认识了,但是昨天讲的东西过于纯理论化,所以在昨天的基础上,今天我们就来进行实战演练,做到活学活用,废话不多说,直接开干吧。
并发相关的缺陷是最容易制造的,也是最难找到的,为了响应现代硬件和应用程序的需求,Linux 内核已经发展到同时处理更多事情的时代。这种变革使得内核性能及伸缩性得到了相当大的提高,然而也极大提高了内核编程的复杂性。
如果需要多个进程合作来完成某个任务,那个可能会存在资源争用或者其他一些意想不到的问题,这个时候,就需要通过实现进程同步来防止问题的产生。
线程 为什么使用线程? 使用fork创建进程以执行新的任务,该方式的代价很高——子进程将父进程的所有资源都复制一遍。 多个进程之间不会直接共享内存。 进程是系统分配资源的基本单位,线程是进程的基本执行
事情是这样的,新装了一套 Linux 环境下的 19.9 RAC 环境,应用方要求关闭归档。本身此机器上有三个实例,均是近期新建的实例并安装 RU 19.9,先将节点二的实例关闭然后在节点一上关闭归档,前两个实例都完成了且正常启动,当第三个实例关闭归档时,在节点一上是正常启动了,但是在节点二启动数据库则报错了,如下图:
net.ipv4.ip_local_port_range = 9000 65500
Linux:进程间通信(二.共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
在 System V 通信标准中,还有一种通信方式:消息队列,以及一种实现互斥的工具:信号量;随着时代的发展,这些陈旧的标准都已经较少使用了,但作为 IPC 中的经典知识,我们可以对其做一个简单了解,扩展 IPC 的知识栈,尤其是 信号量,可以通过它,为以后多线程学习中 POSIX 信号量的学习做铺垫
信号量是一种计数器,用来控制对多个进程/线程共享的资源进行访问。常和锁一同使用。 在某个进程/线程正在对某个资源进行访问时,信号量可以阻止另一个进程/线程去打扰。 生产者和消费者模型是信号量的典型使用。
还真有,最近有 C++ 同学被百度从简历池捞起来面试了,目前经历了一二面,我把比较通用的面试问题抽离出来跟大家分享一波。
进程间通信有如下的目的:1、数据传输,一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M之间;2、共享数据,多个进程想要操作共享数据,一个进程对数据的修改,其他进程应该立刻看到;3、通知事件,一个进程需要向另一个或一组进程发送消息,通知它们发生了某件事情;4、资源共享,多个进程之间共享同样的资源。为了做到这一点,需要内核提供锁和同步机制;5、进程控制,有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
在处理进程间的同步与互斥问题时,我们离不开信号量和PV原语,使用这两个工具的目的在于打造一段不可分割不可中断的程序。应当注意的是,信号量和PV原语是解决进程间同步与互斥问题的一种机制,但并不是唯一的机制。
两个进程的PCB创建虚拟地址空间然后映射到物理内存中,每个进程因为是独立的,所以在物理内存中的地址也不同。 那么共享内存是怎么做到的呢? 首先先在物理内存中申请一块内存。 然后讲这块内存通过页表映射分别映射到这两个进程的虚拟地址空间内,让这两个进程都能看到这块内存。(这里也称为进程和共享内存挂接) 最后如果不想通信了:
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
由于Android系统是基于Linux系统的,所以有必要简单的介绍下Linux的跨进程通信,对大家后续了解Android的跨进程通信是有帮助的,本篇的主要内容如下:
结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去。
信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放信号量。其它想进入该关键代码段的线程必须等待直到第一个线程释放信号量。
领取专属 10元无门槛券
手把手带您无忧上云