因为在做系统升级,AOSP的recovery下有一个flash_image工具,这个工具可以在开机状态下刷写系统分区。源码位置在/bootable/recovery/mtdutils/flash_image.c。
1.本节使用的nand flash型号为K9F2G08U0M,它的命令如下: 1.1我们以上图的read id(读ID)为例,它的时序图如下: 首先需要使能CE片选 1)使能CLE 2)发送0X90命
介绍 Sunxi SPINand mtd/ubi 驱动设计, 方便相关驱动和应用开发人员
这篇记录文是在@IIX Fiber师傅帮助下完成的,同时也感谢群里@Maytersec、@天明、@程哥、@阿柳几个师傅给提供的测试环境和帮着一起测试。
对于ubi卷,不能像普通块设备一样进行随机读写。每次更新需要从头写入。 具体的,需要在打开对应的设备之后,先执行一个ioctl UBI_IOCVOLUP,同时传入要更新的数据大小。 随后开始写入数据。写入可以分多次,但必须写满ioctl指定的需要更新的数据量。 写入足够的数据量之后,ubi才算更新完成。提前中断的话,该卷会被破坏,只能重新开始一次更新才能修复它。
UBI全称是Unsorted Block Images,上图为UBI在系统中的层次结构,最下面是flash层(包括flash控制器,各个flash驱动代码,spi-mem层等);MTD层是对flash层的抽象,一个flash可能被划分成不同的分区,每一个分区都会对应一个MTD设备;UBI层是基于MTD层之上的更高层,UBI层抽象出一个个逻辑擦写块,每个逻辑擦写块都有一个物理擦写块与之前对应,有了这个映射,我们就可以加一些软件算法,达到擦写均衡的目的,从而提高flash的使用寿命;再往上是基于UBI层实现和各种文件系统,比如UBIFS。
介绍TinaLinux Flash,分区,文件系统等存储相关信息,指导方案的开发定制。
NAND FLASH版本和eMMC版本核心板使用方法基本一致。本文主要描述U-Boot编译、基础设备树文件编译、固化Linux系统NAND FLASH分区说明和NAND FLASH启动系统、固化Linux系统、AND FLASH读写测试等,NAND FLASH版本与eMMC版本核心板在使用方面的不同之处,相同之处将不重复描述。
SPI NOR Framework:这层主要是处理不同厂家的NOR 物理特色差异,初始化SPINOR的工作状态,如工作线宽(1 线、2 线、4 线、8 线)、有效地址位(16M 以上的NOR 需要使用4 地址模式),为上层MTD 提供读写擦接口。
该文章介绍了Nor Flash的基本原理、基本操作以及驱动程序的基本使用。它还提供了在用户空间中驱动Nor Flash设备的示例代码。文章还讨论了如何使用MTD设备来模拟Nor Flash,并展示了如何编写简单的用户空间应用程序来与Nor Flash进行通信。
如上图,问题都是出在fs/yaffs2/下,很多error都讲述:调用的成员名,在struct mtd_info结构体里没有定义.
NAND FLASH 原理以及操作详见:https://blog.csdn.net/qq_16933601/article/details/100001443
NOR FLASH硬件原理参考:https://blog.csdn.net/qq_16933601/article/details/102653367
在系统设计时,在PetaLinux工程里,为boot.bin预留多个启动分区。使用命令cat /proc/mtd或者ls /dev/mtd*,看得到多个分区。
Linux API 头文件(在 linux-3.19.tar.xz 里)会将内核 API 导出给 Glibc 使用。
(1) jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux, uCLinux中。 Jffs2: 日志闪存文件系统版本2 (Journalling Flash FileSystem v2)主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压
使用前Gartner连续第二年将移动目标防御(MTD)作为特色技术,并将Morphisec作为该技术的样本供应商,在其报告《新兴技术影响雷达:安全》中。作者将MTD定义为“...一种技术趋势,其中动态或静态排列变形、转换或混淆被用来阻止攻击者利用技术。
4# sudo .armmix410-linux.install opthisi-linuxx86-arm 指定安装路径:opthisi-linuxx86-arm,如果不带这个参数默认安装路径为:optlinuxx86-arm
查看分区格式 # df -hT // ext4 文件格式 Filesystem Type Size Used Available Use% Mounted on /dev/system ext4 2.0G 112.4M 1.8G 6% / devtmpfs devtmpfs 107.2M 0 107.2M 0% /dev tmpf
1、最近原来写的测试代码在Ubuntu18 可以内核版本,在新的安装的Ubuntu20 上无法运行,各种操作后想排除下是否是因为内核版本过高的原因,因此用到降低ubuntu内核版本的操作:
下面是小米路由器折腾记录,包括开启 SSH,然后安装 MT 工具箱,主要是为了其中的两个插件,一个是去广告,一个是 SS 代理,不过附带竟然发现了 frp 插件,开心啊。下面就是具体的记录。
廖威雄,就职于珠海全志科技股份有限公司,负责Linux IO全栈研发、性能优化、开源社区开发交流、Linux 内核开源社区pstore/blk,mtdpstore模块的作者、大客户存储技术支持、全志首个UBI存储方案主导人、全志首个RTOS NFTL主导人
学习步骤如下: 1、Linux 基础 安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统 能够熟练使用Linux系统的基本命令 认识Linux系统的常用服务安装Linux操作系统 Linu
Windows端的java程序使用jni调用C++编写的库,原来实现过在Android和Linux端通过JNI调用C++程序,在Windows端没有实现过,这里记录下几个关键的点;
文件系统是操作系统用于明确磁盘或分区上的文件的方法和数据结构; 即在磁盘上组织文件的方法。也指用于存储文件的磁盘或分区
Linux ubuntu 4.4.0-142-generic #168~14.04.1-Ubuntu SMP Sat Jan 19 11:26:28 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
上面的Flash: *** failed *** 是属于uboot第二阶段函数board_init_r()里的代码, 代码如下所示(位于arch/arm/lib/board.c):
从理论上讲,应该是10分。保护服务器免受外界影响的途径(分段、防火墙、漏洞修补、安全解决方案等)是众所周知的。
除了读取和写入设备外,大部分驱动程序还需要另外一种能力,即通过设备驱动程序执行各种类型的硬件控制。比如弹出介质,改变波特率等等。这些操作通过ioctl方法支持,该方法实现了同名的系统调用。
本文介绍了如何通过Linux内核和硬件平台驱动程序实现IO复用,并使用应用层程序对IO进行操作。首先介绍了Linux内核的IO模型和硬件平台,然后详细阐述了驱动程序如何实现IO复用,接着介绍了应用层程序如何调用驱动程序来实现IO操作。最后通过总结和展望对全文内容进行了梳理和概括。
在Linux中,可以对GPIO进行相关的控制,具体的做法就是利用字符设备驱动程序对相关的gpio进行控制。由于操作系统的限制,在Linux上又无法直接在应用程序的层面上对底层的硬件进行操作。本文主要通过一个点亮红外灯的实例,再次理解Linux下的应用程序与驱动程序的交互,同时加深驱动程序编写流程的理解。
在板子上观察到56M的ubi卷,挂载上ubifs之后,df -h显示可用空间约为50M。 如此计算开销超过了10%,那么这个开销随容量如何变化呢,是固定为10%吗还是有其他规律?
pstore文件系统(是的,这是个文件系统)是Persistent Storage的缩写,最早在2010年由 Tony Luck 设计并合入Linux主分支,设计的初衷是在内核Panic/Oops时能自动转存内核日志(log_buf),在Panic重启后,把转存的日志以文件形式呈现到用户空间以分析内核崩溃问题。
kvm 驱动,现在已经是linux kernel的一个模块了。其主要负责虚拟机的创建,虚拟内存的分配,VCPU寄存器的读写以及VCPU的运行。
前言: 这里作者再次自不量力了,以一点微末的道行分析一下KVM的CPU虚拟化部分的代码。 分析: 1,分析具体代码逻辑之前,可以先使用strace大致看一下qemu启动的时候,和kernel的交互。 在正常启动qemu的命令之前加入strace即可:strace qemu-system-x86_64 -enable-kvm -m 2048 -drive if=virtio,file=/home/ubuntu-server-1604.qcow2,cache=none -redir :8090::80 -r
很长一段时间,nand flash都是嵌入式的标配产品。nand flash价格便宜,存储量大,适用于很多的场景。现在很普及的ssd,上面的存储模块其实也是由一块一块nand flash构成的。对于linux嵌入式来说,开始uboot的加载是硬件完成的,中期的kernel加载是由uboot中的nand flash驱动完成的,而后期的rootfs加载,这就要靠kernel自己来完成了。当然,这次还是以三星s3c芯片为例进行说明。
特殊的read,write, 当你用read,write不能完成某一功能时,就用ioctl
Windows 开发环境: Windows 7 64bit 、Windows 10 64bit
int ioctl( int fd, int request, …/* void *arg */ );
拿到一块YC2440(s3c2440)的开发板,经过几天的学习,我对arm-linux系统开发步骤有了一些认识。就以开发这个开发板为例,arm-linux开发工作大概分4个部分
V4L2英文全称是Video for Linux2,它是专门为视频设备设计的内核驱动。在做视频的开发中,一般我们操控V4L2的设备节点就可以直接对摄像头进行操作。通常V4L2在Linux的设备节点是**/dev/video0**。无论是MIPI摄像头还是UVC摄像头,它们底层默认操作的都是/dev/video0的节点。
为了方便查找,我们加入了一个显示功能引脚位置的功能,运行以下命令,查看板子的40pin引脚上有几个可用i2c
要理解这些接口,记住一句话:APP通过I2C Controller与I2C Device传输数据。
ioctl用于向设备发控制和配置命令,有些命令也需要读写一些数据,但这些数据是不能用read/write读写的,称为Out-of-band数据。也就是说,read/write读写的数据是in-band数据,是I/O操作的主体,而ioctl命令传送的是控制信息,其中的数据是辅助的数据。
倒车影像已经是现在汽车的标配功能了,基本很多车出厂都是360全景影像,倒车影像又称泊车辅助系统,这篇文章就采用Linux开发板完成一个倒车影像的功能。
platform是一条虚拟的总线。设备用platform_device表示,驱动用platform_driver进行注册,Linux platform driver机制和传统的device driver机制(通过driver_register进行注册)相比,一个明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动中使用这些资源时通过platform device提供的标准结构进行申请并使用。这样提高了驱动和资源的独立性,并且具有较好的可移植性和安全性(这些标准接口是安全的)。
之前系列的文章介绍了如何编译Uboot、Kernel以及使用默认的ramdisk根文件系统来构建一个完整的嵌入式Linux系统,本篇文章介绍如何从头制作一个放在NAND Flash上的根文件系统。经过我这段时间的总结,rootfs相关的编译、配置等工作还是比较麻烦的。所以你可能会看到一般做核心板的第三方厂家会建议初学者直接使用现成提供的文件系统,比如一个做NUC972核心板的厂家,其文档里这么描述:
领取专属 10元无门槛券
手把手带您无忧上云