Intel 微处理器的段机制是从8086 开始提出的, 那时引入的段机制解决了从CPU 内部 16 位地址到20 位实地址的转换。为了保持这种兼容性,386 仍然使用段机制,但比以前复杂。 因此,Linux 内核的设计并没有全部采用Intel 所提供的段方案,仅仅有限度地使用 了一下分段机制。这不仅简化了Linux 内核的设计,而且为把Linux 移植到其他平台创造了 条件,因为很多RISC 处理器并不支持段机制。但是,对段机制相关知识的了解是进入Linux 内核的必经之路。
x86 系统中的保护模式,给系统的安全性提供了很大的保障,但是在我们之前的文章中,一直都淡化了特权级别这个概念。
注:本分类下文章大多整理自《深入分析linux内核源代码》一书,另有参考其他一些资料如《linux内核完全剖析》、《linux c 编程一站式学习》等,只是为了更好地理清系统编程和网络编程中的一些概念性问题,并没有深入地阅读分析源码,我也是草草翻过这本书,请有兴趣的朋友自己参考相关资料。此书出版较早,分析的版本为2.4.16,故出现的一些概念可能跟最新版本内核不同。
保护模式与实模式最本质的区别就是:保护模式使用了全局描述符表,用来保存每一个程序(bootloader,操作系统,应用程序)使用到的每个段信息:开始地址,长度,以及其他一些保护参数。
不论是在 x86 平台上,还是在嵌入式平台上,系统的启动一般都经历了 bootloader 到 操作系统,再到应用程序,这样的三级跳过程。
很多小伙伴在学操作系统的时候,学习到内存管理的部分时,都会接触到分段内存管理、分页内存管理。
http://bbs.chinaunix.net/thread-2083672-1-1.html
最近看到这个github仓库flash-linux0.11-talk,觉得还算是蛮有意思的,加上网络编程的课程又有抄写一段tcp协议实现代码或者交一篇linux内核源码阅读的笔记,还是比较讨厌这种低效率的抄写的所以就想写篇文章记录一下粗浅阅读源码后的大概了解,这个github仓库作者的文章我觉得写的还是不错的对于我这类小白而言,也比较有看得下去的动力。
---- 保护模式 什么实模式和保护模式 这是CPU的两种工作模式,解析指令的方式不同。 在实模式下,16位寄存器需要通过段:偏移的方法才能达到1MB的寻址能力。 物理地址 = 段值 x 16 + 偏移 此时段值还可以看成地址的一部分,段值为XXXXh表示以XXXX0h开始的一段内存。 在保护模式下,CPU有着巨大的寻址能力,并为操作系统提供了虚拟内存和内存保护。 虽然物理地址的仍然用上面的公式表示,但此时“段”的概念发生了变化,它变成了一个索引,指向一个数据结构的一个表项,表项中详细定义了段的
磁盘布局 为了更好的理解在线调整大小工作机制,我们首先需要理解 ext3 和 ext4 文件系统的磁盘布局,对于该功能的实现来说,这两个文件系统在磁盘上的结构是一致的,同时为了简化和突出重点,对于与在线调整大小功能不相关的内容我们将不会介绍。 Ext3 文件系统将其所管理的磁盘或者分区(引导块除外)中的块划分到不同的块组中。每个块组大小相同,当然最后一个块组所管理的块可能会少一些,其大小在文件系统创建时决定,主要取决于文件系统的块大小,对于大小为4k的文件系统块来说,块组大小为 168M。每个块组都包含一些
硬件逻辑设计为加电瞬间强行设置:CS=0xF000,IP=0xFFF0,CS:IP=0xFFFF0
本文以linux0.11版本为基础,分析进程的内存布局,现代版本已经发生比较大的变化,都是很多原理都是类似的。 系统维护了一个全局的数据结构叫GDT( Global Descriptor Table),他保存了所有进程的代码段数据段的一些信息。系统有专门的寄存器保存了GDT的地址,叫GDTR。GTDR的格式如下。
这一篇大致说一下进程的创建,有兴趣的可以参考之前的一些文章或者直接上代码https://github.com/theanarkh/read-linux-0.11。
每一个进程都有一张段表LDT。整个系统有一张GDT表。且整个系统仅仅有一个总页表。
---- 我们希望自己的操作系统内核至少应该在Linux下用GCC编译链接。 Loader要做的事有两件:加载内核入内存、跳入保护模式。 ---- 在Linux下用汇编写程序 示例: ;hello.asm [section .data] ; 数据在此 strHello db "Hello, world!", 0Ah STRLEN equ $ - strHello [section .text] ; 代码在此 global _start ; 我们必须导出 _start 这个入口
PS:原先实模式下的各个段寄存器作为保护模式下的段选择器,80486中有6个(即CS,SS,DS,ES,FS,GS)80位的段寄存器。由选择器CS对应表示的段仍为代码段,选择器SS对应表示的段仍为堆栈段。
以上就是对GDT表或者 LDT表的描述 总结来说 GDT或者LDT 就是一块内存. 也可以看成一个数组. 数组的每一项其实保存的都是段描述符 段选择子就是下标 3.1.2 GDTR寄存器与GDT表了解. 根据Inter手册所属. GDTR寄存器 保存了 GDT的 32位基地址 和16位表界限 基地址指的就是GDT从0字节开始的线性地址.可以理解为就是数组首地址. 表界限.可以理解为就是数组的大小. 所以说GDTR 寄存器是一个48位寄存器 按照C语言结构来来表是就如下 struct GDTR { DWORD *GdtBase, SHORT limit; } LGDT 与SGDT 汇编指令 分别是用来获取和保存 GDTR寄存器的. 电脑开机之后,通电之后.GDT就开始初始化了. 总结:
80386的各种寄存器一览:通用寄存器(32位)、段寄存器(16位)、标志寄存器(32位)、系统地址寄存器、调试寄存器和测试寄存器(32位)。
作者: OUYANG_LINUX007 来源: http://blog.csdn.net/ouyang_linux007/article/details/7422346 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核
此前我们对操作系统中的分段、分页机制以及虚拟地址、逻辑地址、线性地址、物理地址进行了较为详细的介绍。 操作系统的内存管理 — 分段与分页、虚拟地址、逻辑地址、线性地址、物理地址
我们可以通过ring3的段寄存器. 当作GDT表的下标.进行查表. 查询GDT表.
上一节,我们开发了一个流氓程序,当他运行起来后,能够把自己的数据写入到另一个进程的数据内存中。之所以产生这样的漏洞,是因为被入侵进程的数据段所对应的全局描述符在全局描述符表中。恶意程序通过在全局描述符表中查找,当找到目标程序的内存描述符后,将对应的描述符加载到自己的ds寄存器里,于是恶意程序访问内存时,就相当于读写目标程序的内存。 要防范此类入侵,最好的办法是让恶意程序无法读取自己内存段对应的描述符,但是如果不把自己的内存描述符放置在全局描述符表中的话,还能放哪里呢?Intel X86架构还给我们提供了另一
在之前的文章中Linux从头学10:三级跳过程详解-从 bootloader 到 操作系统,再到应用程序,由于当时没有引入特权级的概念,用户程序和操作系统都工作在相同的特权级,因此可以直接通过[段选择子:偏移量] 的方式,来调用属于操作系统代码段中的函数,如下所示:
与硬件相关的代码全部放在 arch(architecture 一词的缩写,即体系结构相关)目录下。
经过多篇文章的介绍,我们对 32 位保护模式已经有了很深的认识,尤其是分段机制以及由此带来的对内存的保护。 进军保护模式 保护模式进阶 — 再回实模式
程序其实是由一堆指令组成的,因此程序载入后的解释执行的过程,其实总结就是四个字: “取指执行”
因为程序是分段在内存中存放的,因此需要额外的空间记录每个段的存放位置和占用大小,这就引出了段表,这里的段表又被称为LDT表,每个进程都对应一个LDT表:
分段让操作系统具备了对内存的保护能力,通过描述符表、选择子的多级跳转,让每一段内存都增加了一系列属性,从而可以实现读、写、执行等权限以及为不同程序赋予不同特权的保护功能。 在此前的文章中,我们已经提到,通过 LDT 来解决进程间内存独立的问题,其代价是寄存器的反复加载,这对于 CPU 来说是一件较为耗时的操作,于是,80386 开始,Intel 引入了内存分页功能,相比于 LDT,更为灵活高效,因此 LDT 已经基本不会被使用了。 那么,分页究竟是一种什么样的机制,又是如何实现的呢?本文我们就来一探究竟。
注:本分类下文章大多整理自《深入分析linux内核源代码》一书,另有参考其他一些资料如《linux内核完全剖析》、《linux c 编程一站式学习》等,只是为了更好地理清系统编程和网络编程中的一些概念
中断描述符表简单来说说是定义了发生中断/异常时,CPU按这张表中定义的行为来处理对应的中断/异常。
我们的计算机启动时,首先BIOS会进行自检操作,在自检通过以后就需要将控制权交给MBR程序,在MBR程序中我们跳转到我们的OBR(内核加载器)中。
这里说的物理地址是内存中的内存单元实际地址,不是外部总线连接的其他电子元件的地址!
进入保护模式以后,数据段、代码段等内存段不再是通过段寄存器获得段基址就可以使用,我们需要把段定义好,并且登记好,全局描述符表便是用来记录这些段信息的数据结构。
分段内存段间的内存空间太大(16位64k),碎片太多,段+偏移转换为线性地址后,通过分页管理,映射到新的地址空间,页目录+页表+页内偏移(12位4k),减小内存间隙的大小
但是长跳转只限于 段间跳转. 也就是一个段中. 因为在一个段中. 最后的偏移 加 段描述符.base才能构成真正的跳转地址.
这一点主要是了解下. 我们很多时候都听别人说 ring3 ring0 其实就是 CPU的等级划分.
进程的地址有三种,分别是虚拟地址(逻辑地址)、线性地址、物理地址。在分析之前先讲一下进程执行的时候,地址的解析过程。在保护模式下,段寄存器保存的是段选择子,当进程被系统选中执行时,会把tss和ldt等信息加载到寄存器中,tss是保存进程上下文的,ldt是保存进程代码和数据段的首地址偏移以及权限等信息的。假设当前执行cs:ip指向的代码,系统根据ldt的值从gdt中选择一个元素,里面保存的是idt结构的首地址。然后根据cs的值选择idt表格中的一项,从而得到代码段的基地址和限长,用基地址加上ip指向的偏移得到一个线性地址,这个线性地址分为三个部分,分别是页目录索引,页表索引,物理地址偏移。然后到页目录吧和页表中找到物理地址基地址,再加线性地址中的偏移部分,得到物理地址。下面我们看看这些内容是怎么设置的,使得执行的时候能正确找到我们想要的地址去执行代码。我们从fork函数开始。到进程被调度执行时所发生的事情。fork函数的具体调用过程之前已经分析过。下面贴一下主要的代码。
通过执行g++ -c test.cpp以后生成obj文件,然后通过objdump -d test.o输出编译后的指令得到
!dd 加上!, ! dd 物理地址 专门用于显示物理地址的.
上次讲了VFS层,这次说说文件系统层,文件系统层将不同的文件系统实现了VFS的这些函数,通过指针注册到VFS里面。所以,用户的操作通过VFS转到各种文件系统,linux用到最多的是ext4文件系统,我们就说这个吧。EXT4是第四代扩展文件系统(英语:Fourth extended filesystem,缩写为 ext4)是Linux系统下的日志文件系统,是ext2和ext3文件系统的后继版本。 ext4文件系统布局 一个Ext4文件系统被分成一系列块组。为减少磁盘碎片产生的性能瓶颈,块分配器尽量保持每个文件
进程,这个词大家应该耳熟能详了,那进程是什么呢?我们说程序一般是外存上的一个可执行文件,而进程就是这个可执行文件在内存中的一个执行实例。概念始终只会是一个抽象的概念,进程系列文章通过 $xv6$ 的实例来将进程这个概念具象化。本篇主要介绍进程涉及到的一些数据结构,废话不多说,直接来看
操作系统是用来管理与协调硬件工作的,开发一款操作系统有利于理解底层的运转逻辑,本篇内容主要用来理解操作系统是如何启动的,又是如何加载磁盘中的内核的,该系列文章参考各类底层书籍,通过自己的理解并加以叙述,让内容变得更加简单,一目了然,即可学到知识又能提高自己的表述能力。
在Linux系统中,程序运行时可能会遇到段错误(Segmentation Fault),这是一种常见的运行时错误,通常由于程序试图访问其内存空间中未分配(或不允许)的部分时发生。
操作系统接口并不是直接暴露给用户使用的,用户是通过应用软件间接调用到操作系统接口的。
学习Windows程序设计也有一些时间了,为了记录自己的学习成果,以便以后查看,我希望自己能够坚持写下一系列的学习心得,对自己学习的内容进行总结,同时与大家交流。因为刚学习所以可能有的地方写不不正确,希望大家能够指出。
CS部分后面又4个0,相当于是左移了4位。总之就是要让CS左移4位之后加上EIP来得到要跳转的地址。
经过一系列的文章,我们通过汇编语言,体验了保护模式下分段、分页、特权级跳转、中断、异常等机制。 那么,事到如今,你是否已经深谙保护模式的设计之道了呢?究竟什么是保护模式,保护模式又在“保护”什么呢?他为了什么诞生,又和实模式有什么区别呢? 本文我们就来详细总结一下。
在上一篇文章中,我们已经了解了中断和异常的一些概念,对于中断和异常也有了大概的理解。那么,系统中硬件到底是如何处理中断和异常的呢?本文我们就以常见的X86架构为例,看看中断和异常的硬件工作原理。
领取专属 10元无门槛券
手把手带您无忧上云