finish:运行程序,知道当前函数完成返回,并打印函数返回时的堆栈地址和返回值及参数值等信息。
呵,段错误?自从我看了这篇文章,我还会怕你个小小段错误? 请打开你的Linux终端,跟紧咯,准备发车!!嘟嘟嘟哒~~
今天小编要跟大家分享的文章是关于Linux上错误段的核心转储问题。喜欢Linux操作系统,对Linux感兴趣的小伙伴快来看一看吧,希望通过本篇文章能够有所收获。
当程序运行过程中出现Segmentation fault (core dumped)错误时,程序停止运行,并产生core文件。core文件是程序运行状态的内存映象。使用gdb调试core文件,可以帮助我们快速定位程序出现段错误的位置。当然,可执行程序编译时应加上-g编译选项,生成调试信息。
在案例中我使用c语言编写了一个简单的四层二叉树进行 GDB 调试练习。这个程序故意在后面引发了一个段错误,导致程序崩溃。文章将使用 GDB 来诊断这个问题。
在Linux环境下执行程序的时候,有的时候会出现段错误(‘segment fault’),同时显示core dumped,就像下面这样:
core dump又叫核心转储, 当程序运行过程中发生异常, 程序异常退出时, 由操作系统把程序当前的内存状况存储在一个core文件中, 叫core dump. (linux中如果内存越界会收到SIGSEGV信号,然后就会core dump)
core dump 可以理解为当程序崩溃时,自动将内存信息保存到文件中。这里的 core 就是 memory,dump 就是将内存数据保存到磁盘的过程。
用root权限的Terminal(或一般权限的Terminal)的vi编辑器编写一个C程序a.c:
在Linux系统中,程序运行时可能会遇到段错误(Segmentation Fault),这是一种常见的运行时错误,通常由于程序试图访问其内存空间中未分配(或不允许)的部分时发生。
使用 gdb 之前,要求对文件进行编译时增加 -g 参数,加了这个参数过后生成的编译文件会大一些,这是因为增加了 gdb 调试内容。
使用gdb进行调试后,定位到错误。当程序执行 return 1 + my_strlen(p++)这条语句时,会出现以下的段错误情况。
Segmentation Fault(段错误)是C语言中最常见的运行时错误之一,通常在程序试图访问非法内存地址时发生。这个错误不仅影响程序的正常运行,还可能导致程序崩溃和数据丢失。本文将详细介绍Segmentation Fault的产生原因,提供多种解决方案,并通过实例代码演示如何有效避免和解决此类错误。
约定:对gdb的命令,如果有缩写形式,会在第一次出现的时候小括号内给出缩写,比如运行命令写成run(r);本文中尖括号< >用来表达一类实体,比如<program>表示这个地方可以放置程序;中括号[]表示括号中的内容是可写可不写,比如[=<value>],表示“=<value>”可以有也可以没有(<value>本身又是一类实体);“|”表示或的关系。
最近需要在linux上使用c++开发后台服务器程序。原先使用Python很顺手,但是基于项目需求的原因需要转到c++开发,后者优点是效率高,缺点是技术难度大,最要命的是调试难度比python要大很多,于是我又不得不把GDB应用的一些知识点捡起来。
有的程序可以通过编译,但在运行时会出现Segment fault(段错误)。这通常都是指针错误引起的。但这不像编译错误一样会提示到文件一行,而是没有任何信息。一种办法是用gdb的step, 一步一步寻找。但要step一个上万行的代码让人难以想象。 我们还有更好的办法,这就是core file。
当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中(core文件),这种行为就叫做 Core Dump 或者叫做 ‘核心转储’,利用 coredump 可以帮助我们快速定位程序崩溃位置
摘要:当程序运行出现段错误时,目标文件没有调试符号,也没配置产生 core dump,如何定位到出错的文件和函数,并尽可能提供更详细的一些信息,如参数,代码等。 第一板斧 准备一段测试代码 018.c #include <stdio.h> int main(int argc, char *argv[]) { FILE *fp = NULL; fprintf(fp, "%s\n", "hello"); fclose(fp); return 0; } 编译运行 $ gcc 0
写在前面:今天开始尝试写写除Vim外的其他内容,仍然是以技术为主,可能涉及的内容包括Linux、正则表达式、gdb、makefile等内容,不知道小伙伴们有没有兴趣看呢?不管如何,也算是我自己的知识沉淀吧~
对于一个程序而言,语法错误由编译器(比如GCC)负责,而逻辑错误则由开发人员负责。项目研发过程中,不可避免地会出现或多或少的问题,有些比较简单的可以目测,有些复杂一点的,就需要使用特殊的工具——调试器(比如GDB)来协助了。
在进行C/C++相关开发时候,经常会遇到段错误,这个时候比较无语的一点就是Linux Shell终端下几乎不会输出太多有用的信息,大多数情况下打印信息如下:Segmentation fault (core dumped),错误如下图所示:
写一篇程序就像谈一场恋爱,一篇一笔写就丝丝入扣毫无破绽扩展性好且兼容性强最终达到完美无瑕的程序,就像一场青梅竹马烈火烹油如胶似漆最后白头偕老的故事,它们基本都属于童话,童话里都是骗人的!那就有个疑问了,开发者是怎么调试代码的呢?
本文介绍了如何使用gdb和gdbserver来调试ARM Linux程序,包括编译、运行、连接到GDB Server以及使用GDB进行调试的过程。同时,还介绍了如何通过gdb和coredump文件来调试程序,包括生成core文件、进入虚拟机以及使用GDB进行调试的过程。
有些 BUG 是业务逻辑上的错误导致的,一般不会导致程序崩溃,例如:原本要将两个数相加,但不小心把这两个数相减,而导致结果出错。这时我们可以通过在程序中,使用 printf 这类输出函数来进行打点调试。
Windows无人参与安装在初始安装期间使用应答文件进行处理。您可以使用应答文件在安装过程中自动执行任务,例如配置桌面背景、设置本地审核、配置驱动器分区或设置本地管理员账户密码。应答文件是使用Windows系统映像管理器创建的,它是Windows评估和部署工具包(ADK:Assessment and Deployment Kit)的一部分,可以从以下站点免费下载https://www.microsoft.com.映像管理器将允许您保存unattended.xml文件,并允许您使用新的应答文件重新打包安装映像(用于安装Windows)。在渗透式测试期间,您可能会在网络文件共享或本地管理员工作站上遇到应答文件,这些文件可能有助于进一步利用环境。如果攻击者遇到这些文件,以及对生成映像的主机的本地管理员访问权限,则攻击者可以更新应答文件以在系统上创建新的本地账户或服务,并重新打包安装文件,以便将来使用映像时,新系统可以受到远程攻击。
C 缓冲区溢出背后的基本思想非常简单。您有一个缓冲区,这是一块保留用于存储数据的内存。在堆栈的外部(在 x86 和 x86_64 上向下增长,这意味着随着内存地址变大,内存地址会下降),程序的其他部分被存储和操作。通常,我们进行黑客攻击的想法是按照我们认为合适的方式重定向程序流。对我们来说幸运的是,对堆栈的操作(堆栈“粉碎”)可以让我们做到这一点。通常,您会希望获得特权,通常是通过执行 shellcode - 或者无论您的最终目标是什么,但出于本教程的目的,我们只会将程序流重定向到我们无法访问的代码(在实践,这几乎可以是任何事情;甚至包括执行未正式存在的指令)。这是通过写入越过缓冲区的末尾并任意覆盖堆栈来完成的。
Invalid Pointer(无效指针)是C语言中常见且危险的内存管理错误。它通常在程序试图使用未初始化、已释放或不合法的指针时发生。这种错误会导致程序行为不可预测,可能引发段错误(Segmentation Fault)、数据损坏,甚至安全漏洞。本文将详细介绍Invalid Pointer的产生原因,提供多种解决方案,并通过实例代码演示如何有效避免和解决此类错误。
目前release的最新版本为8.0,GDB可以运行在Linux 和Windows 操作系统上。
进程崩溃时,Linux会将崩溃前进程的内存状态保存在core文件里,就像保存了案发现场的照片,可以帮助开发人员找到事故原因,修复程序。本文用简单的例子讲解如何根据core文件,定位进程崩溃的原因。 首先编写C++代码,定义一个空指针,对空指针所指向的内存区域写,发生段错误
Dangling Pointer(悬空指针)是C语言中一种常见且危险的内存管理问题。它通常在指针指向的内存已经被释放或重新分配后继续被使用时发生。这种错误会导致程序行为不可预测,可能导致数据损坏、程序崩溃,甚至安全漏洞。本文将详细介绍Dangling Pointer的产生原因,提供多种解决方案,并通过实例代码演示如何有效避免和解决此类错误。
Backtrace中,一般都只有一些地址。但是利用addr2line这个工具,就可以找到对应的代码行。前提条件是可执行程序或者动态链接库编译的时候带-g选项。
项目遇到一个问题,就是程序在Ubuntu下运行的时候是正常的,至少大部分时候运行是正常的,但是移到开发板上,就会出现段错误。这时候突然想到了GDB,从来都没有接触过调试工具,以前的调试都是使用printf直接打印的方式!!!效率极低!准备鸟枪换炮!!!
缓冲区溢出实验(Linux 32位) 参考教程与材料:http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/ (本文记录了做SEED缓冲区溢出实验的体会与问题,侧重实践,而不是讲解缓冲区溢出原理的详细教程) 1. 准备工作 使用SEED ubuntu虚拟机进行缓冲区溢出实验,首先要关闭一些针对此攻击的防御机制来简化实验。 (1)内存地址随机化(Address Space Randomization):基于Linux的操作
请查看位于https://github.com/xmu-Linux101/Linux101/tree/201720182/experiments/gcc-5-gdb的代码
Coredump 调试 Coredump是什么? Linux环境下,当程序异常退出(发生段错误)时,会产生一个core文件,该文件记录了程序运行时的内存,寄存器状态,堆栈指针,内存管理信息还有各种函数调用堆栈信息等,我们可以理解为是程序工作当前状态存储生成的一个文件,通过工具分析这个文件,我们可以定位到程序异常退出的时候对应的堆栈调用等信息,找出问题所在并进行及时解决。 ---- 前期设置 设置core文件生成的目录,其中%e表示程序文件名,%p表示进程ID,否则会在程序的当前目录生成dore文件。
首先我们还是来普及以下概念,讲点虚的。 现在是图形系统的天下,windows我们用了20年。成功归功与它图形界面,你会点鼠标吗你会敲键盘吗?所以你会上网会聊天会玩游戏了。 第一步开始当然是选个linux系统版本,有环境才能玩,没环境你说个啥? 现在发行的linux系统很多redhat,suse,CentOS,fedora,ubuntu还有等等。下载它们的镜像文件,刚开始我建议在windows下装个VirtualBox,vmware有点臃肿了。对于初学者当然建议是装ubuntu了,安装简单中文支持的不错。
图灵最先发明了栈,但没有给它取名字。德国人鲍尔也“发明”了栈,取名叫酒窖。澳大利亚人汉布林也“发明”了栈,取名叫弹夹。1959年,戴克斯特拉在度假时想到了Stack这个名字,后来被广泛使用。
检查核心转储文件是否被启用,其中core file size项应该不是0【0表示禁用】。如果是0,可以使用ulimit -c unlimited 来启用核心转储文件的生成。
这个是某公司的面试题,但对于笔者来说,这是linux C++必须掌握的技能!不然真的小白了! 假设下面的程序,很明显,这是一个错误的程序,不可以将一个字符串直接拷贝到空指针中!
Null Pointer Dereference(空指针解引用)是C语言中常见且危险的内存管理错误。它通常在程序试图访问通过空指针(NULL pointer)引用的内存地址时发生。这种错误会导致程序行为不可预测,可能引发段错误(Segmentation Fault)、程序崩溃,甚至安全漏洞。本文将详细介绍Null Pointer Dereference的产生原因,提供多种解决方案,并通过实例代码演示如何有效避免和解决此类错误。
license: "cc-by-nc-nd-4.0" description: "本文手把手指导如何创建一个可以执行的共享目标文件"
选自Medium 作者:Franklin He 机器之心编译 参与:Nurhachu Null、路 本文介绍了如何在 Google Colab(Google 提供免费 GPU 的机器学习环境)上运行 StarCraft II 机器学习项目,包括过程中遇到的问题和作者提出的解决方案。 如果你想开始使用 FREE StarCraft II 机器学习环境,请先完善 GPU 硬件,您可以看一下我的 Google Colab notebook:https://colab.research.google.com/dri
程序奔溃是一件令人头疼之事,最要命的是那种运行很久后莫名其妙奔溃的情形。GDB调试器对处理奔溃很有用,当程序运行在GDB的管控下时,如果出现奔溃,那么它会直接指出奔溃的代码行,这使得奔溃查找变得非常高效,例如上次出现的段错误,如果我们使用GDB再次运行,它会停留在奔溃的代码行:
代码调试在程序开发阶段占有举足轻重的地位,可见代码调试的重要性。但是有一点必须强调:程序是设计出来的,而不是调试出来的。这是所有程序员必须牢记在心的一条准则。一个没有设计或者这几得很糟糕的程序,无论怎样调试,也不会成为一个合格的程序。
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
在使用C或C++编写程序时,有时会遇到一些运行时错误,其中一种常见的错误是Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0。这个错误提示意味着程序引发了一个严重的信号(Signal),导致程序崩溃。SIGSEGV是段错误(Segmentation Fault)的信号,它通常发生在访问无效的内存地址时。
当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中,这种行为就叫做 Core Dump(中文有的翻译成“核心转储”)。
首先,栈 (stack) 是一种串列形式的 数据结构。这种数据结构的特点是 后入先出 (LIFO, Last In First Out),数据只能在串列的一端 (称为:栈顶 top) 进行 推入 (push) 和 弹出 (pop) 操作。根据栈的特点,很容易的想到可以利用数组,来实现这种数据结构。但是本文要讨论的并不是软件层面的栈,而是硬件层面的栈。
领取专属 10元无门槛券
手把手带您无忧上云