首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    多维数据库概述之一---多维数据库的选择

    1. 多维数据库简介 多维数据库(Multi Dimesional Database,MDD)可以简单地理解为:将数据存放在一个n维数组中,而不是像关系数据库那样以记录的形式存放。因此它存在大量稀疏矩阵,人们可以通过多维视图来观察数据。多维数据库增加了一个时间维,与关系数据库相比,它的优势在于可以提高数据处理速度,加快反应时间,提高查询效率。MDD的信息是以数组形式存放的,所以它可以在不影响索引的情况下更新数据。因此MDD非常适合于读写应用。 1.1. 关系数据库存在的问题 利用SQL进行关系数据库查询的局限性: 1) 查询因需要“join”多个表而变得比较烦琐 ,查询语句(SQL) 不好编程; 2) 数据处理的开销往往因关系型数据库要访问复杂数据而变得很大。 关系型数据库管理系统本身局限性: 1) 数据模型上的限制 关系数据库所采用的两维表数据模型,不能有效地处理在大多数事务处理应用中,典型存在的多维数据。其不可避免的结果是,在复杂方式下,相互作用表的数量激增,而且还不能很好地提供模拟现实数据关系的模型。关系数据库由于其所用数据模型较多,还可能造成存储空间的海量增加和大量浪费,并且会导致系统的响应性能不断下降。而且,在现实数据中,有许多类型是关系数据库不能较好地处理的 。 2) 性能上的限制 为静态应用例如报表生成,而设计的关系型数据库管理系统,并没有经过针对高效事务处理而进行的优化过程。其结果往往是某些关系型数据库产品,在对GUI和Web的事务处理过程中,没有达到预期的效果。除非增加更多的硬件投资,但这并不能从根本上解决问题。 用关系数据库的两维表数据模型,可以处理在大多数事务处理应用中的典型多维数据,但其结果往往是建立和使用大量的数据表格,仍很难建立起能模拟现实世界的数据模型。并且在数据需要作报表输出时,又要反过来将已分散设置的大量的两维数据表,再利用索引等技术进行表的连接后,才能找到全部所需的数据,而这又势必影响到应用系统的响应速度。 3) 扩展伸缩性上的限制 关系数据库技术在有效支持应用和数据复杂性上的能力是受限制的。关系数据库原先依据的规范化设计方法,对于复杂事务处理数据库系统的设计和性能优化来说,已经无能为力。此外,高昂的开发和维护费用也让企业难以承受。 4) 关系数据库的检索策略,如复合索引和并发锁定技术,在使用上会造成复杂性和局限性。 1.2. 多维数据库的相关定义 维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。 维的层次(Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。 维的成员(Member):维的一个取值,是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)。 度量(Measure):多维数组的取值。(2000年1月,上海,笔记本电脑,0000)。 OLAP的基本多维分析操作有钻取(Drill-up和Drill-down)、切片(Slice)和切块(Dice)、以及旋转(Pivot)等。 钻取:是改变维的层次,变换分析的粒度。它包括向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)。Drill-up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而Drill-down则相反,它从汇总数据深入到细节数据进行观察或增加新维。 切片和切块:是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个或以上,则是切块。 旋转:是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。 1.3. 多维数据库的特点 后关系型数据库的主要特征是将多维处理和面向对象技术结合到关系数据库上。这种数据库使用强大而灵活的对象技术,将经过处理的多维数据模型的速度和可调整性结合起来。由于它独有的可兼容性,对于开发高性能的交换处理应用程序来说,后关系型数据库非常理想.在后关系型数据库管理系统中,采用了更现代化的多维模型,作为数据库引擎。并且,这种以稀疏数组 为基础的独特的多维数据库架构,是从已成为国际标准的数据库语言基础上继承和发展的,是已积累了实践经验的先进而可靠的技术。 多维数据模型能使数据建模更加简单,因为开发人员能够方便地用它来描述出复杂的现实世界结构,而不必忽略现实世界的问题,或把问题强行表现成技术上能够处理的形态,而且多维数据模型使执行复杂处理的时间大大缩短。例如开发一个服装连锁店信息管理系统时,如果用关系数据库,就需要建立许多表,一张表用来说明每种款式所具有的颜色和尺寸,另一张表用来建立服装和供应商之间的映射,并表示它是否已被卖出,此外还需要建一些表来表示价格变化、各店的库存等等。每成交一笔生意,所有这些表都需要修改,很快这些关系数据库就会变得笨重而

    02

    db2常用操作命令

    1、 打开命令行窗口   #db2cmd 2、 打开控制中心   # db2cmd db2cc 3、 打开命令编辑器  db2cmd db2ce =====操作数据库命令===== 4、 启动数据库实例   #db2start 5、 停止数据库实例   #db2stop   如果你不能停止数据库由于激活的连接,在运行db2stop前执行db2 force application all就可以了 /db2stop force 6、 创建数据库   #db2 create db [dbname] 7、 连接到数据库   #db2 connect to [dbname] user[username] using [password] 8、 断开数据库连接   #db2 connect reset 9、 列出所有数据库  #db2 list db directory 10、 列出所有激活的数据库   #db2 list active databases 11、 列出所有数据库配置   #db2 get db cfg 12、 删除数据库   #db2 drop database [dbname] (执行此操作要小心) 如果不能删除,断开所有数据库连接或者重启db2 =========操作数据表命令========== 13、 列出所有用户表   #db2 list tables 14、列出所有系统表  #db2 list tables for system 15、列出所有表   #db2 list tables for all 16、 列出系统表   #db2 list tables for system 17、列出用户表   #db2 list tables for user 18、 列出特定用户表   #db2 list tables for schema[user] 19、 创建一个与数据库中某个表(t2)结构相同的新表(t1)   #db2 create table t1 like t2 20、 将一个表t1的数据导入到另一个表t2

    02

    oushudb丨案例分析 丨湖仓一体助力保险企业数据战略转型升级

    当下,海量数据结合前沿技术架构正在为保险业带来根本性的变革。本文以某知名保险机构为例,结合偶数行业实践经验,介绍保险企业如何利用湖仓一体技术推动数据战略转型升级。背景介绍在对该客户需求进行深度挖掘并横向比较行业现状后,我们发现:(1) 包括该客户在内的多数保险企业的数据分析场景较为单一,直接产生业务价值的数据挖掘不够丰富;(2) 该客户现有数据分析场景的效率、性能、用户体验都亟待提升。下文我们详细展开分析。业务场景分析客户现有的数据分析应用集中在经营分析、监管报送和风险管控等几个传统场景,其实不止该客户,目前大多数保险企业的大数据业务应用价值挖掘都还不够丰富。1.风险管控仅以目前多数保险企业都非常关注的风控环节为例,该客户仍以风险部门固定报表分析为主,而通过风险数据建模,应用在投保前风险排查、承保中风险管控及理赔时风险识别和反欺诈等全业务链条还非常有限。在投保环节,可以利用数据搭建风险评估模型,筛查高风险客户,对大概率产生负价值的客户采用拒保或者提高保费的方式以减少损失。以互联网场景下的意外险和健康险为例,由于投保手续较为简单,很多产品免体检,只需要填写投保人基本信息即可,这些业务中,很容易出现投保人隐瞒病情、造假家庭收入的情况,逆向选择甚至欺诈的可能性非常大。因此在投保场景下可以利用数据进行多维分析,及时发现高风险投保客户,避免欺诈行为的发生。在承保运营环节,相比较传统风控,大数据风控让保险机构对保险用户的动态跟踪反馈,定期对承保中用户信息进行维护,更新用户风险指数。此外,在加强用户信息安全管理和隐私方面,保险公司借助大数据和人工智能(如设备指纹、IP 画像、机器行为识别等工具)加以防范,在回访环节,根据用户情况及其手机在网状态选择拨打方式及话术,更有利于提高回访效率,提升客户体验。在理赔环节,大数据风控先通过构建模型的方式筛查出疑似欺诈的高风险案件,然后再人工重点审核和调查,减少现场查勘误差,提高查勘效率。除了风险管控,通过数据赋能业务还可以落地在其他几个重点保险场景中,包括产品创新、风险定价、精准获客。接下来我们展开说明下数据赋能这些场景的形式和实现逻辑。

    01

    使用MMM实现MySQL双主复制高可用

    MMM(Master-Master replication manager for MySQL)是一套支持双主故障切换和双主日常管理的脚本程序。MMM使用Perl语言开发,主要用来监控和管理MySQL Master-Master(双主)复制,可以说是mysql主主复制管理器。虽然叫做双主复制,但是业务上同一时刻只允许对一个主进行写入,另一台备选主上提供部分读服务,以加速在主主切换时刻备选主的预热,可以说MMM这套脚本程序一方面实现了故障切换的功能,另一方面其内部附加的工具脚本也可以实现多个slave的read负载均衡。MMMM是关于MySQL主主复制配置的监控、故障转移和管理的一套可伸缩的脚本套件(在任何时候只有一个节点可以被写入)。这个套件也能对居于标准的主从配置的任意数量的从服务器进行读负载均衡,所以可以用它在一组居于复制的服务器启动虚拟IP,除此之外,它还有实现数据备份、节点之间重新同步功能的脚本。

    02
    领券