CPU使用率指的是程序在运行期间实时占用的CPU百分比,这是对一个时间段内CPU使用状况的统计。
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过 oliver.yang at linux.alibaba.com 反馈。
系统负载:在Linux系统中表示,一段时间内正在执行进程数和CPU运行队列中就绪等待进程数,以及非常重要的休眠但不可中断的进程数的平均值(具体load值的计算方式,有兴趣可以自行深究,这里不深究)。说白了就是,系统负载与R(Linux系统之进程状态)和D(Linux系统之进程状态)状态的进程有关,这两个状态的进程越多,负载越高。
当我们系统有问题的时候,不要急于去调查我们代码 首先要看的是操作系统的报告,看看操作系统的CPU利用率,看看内存使用率,看看操作系统的IO,还有网络的IO,网络链接数,等等 Windows下的perfmon是一个很不错的工具,Linux下也有很多相关的命令和工具,比如:SystemTap,LatencyTOP,vmstat,sar,iostat,top,tcpdump等等 通过观察这些数据,就可以知道性能问题基本上出在哪里 (1)先看CPU利用率,如果CPU利用率不高,但是系统的吞吐量和系统延迟指标上不去,
什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
CPU 利用率,又称 CPU 使用率。顾名思义,CPU 利用率用于描述 CPU 的运行情况,反映了一段时间内 CPU 被程序占用的情况。使用率越高,表示计算机在该时间段内运行了更多的程序,反之则较少。CPU 的利用率与其性能直接相关。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
说真的,这就是《我想进大厂》系列第八篇,但是Linux的问题确实很少,就这样,强行编几个没有营养的问题也没啥意义。
记得博主以前被问到 CPU 负载如何才算高的时候,出过一次糗,具体就不记录了。。。在网上找了一篇比较详细的 Linux 下的 CPU 负载算法教程,科普一下。不感兴趣,或看不懂的朋友无视即可,不必浪费时间哈。 ---- 昨天查看 Nagios 警报信息,发现其中一台服务器 CPU 负载过重,机器为 CentOS 系统。信息如下: 2011-2-15 (星期二) 17:50 WARNING - load average: 9.73, 10.67, 10.49 还有前两个小时发出的警报信息: 2011-2
内存量,缓存大小,读取和写入磁盘的速度以及处理能力的速度和可用性都是影响基础架构性能的关键因素。在本教程中,我们将重点介绍CPU监控概念以及警报策略。我们将介绍如何使用两个常见的Linux实用程序,uptime命令和top命令了解CPU负载和利用率,以及如何设置腾讯云警报策略以通知您有关CVM CPU的高负载情况。
时间片即CPU分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片,即该进程允许运行的时间,使各个程序从表面上看是同时进行的。如果在时 间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。而不会造成CPU资源浪费。在 宏观上:我们可以同时打开多个应用程序,每个程序并行不悖,同时运行。但在微观上:由于只有一个CPU,一次只能处理程序要求的一部分,如何处理公平,一 种方法就是引入时间片,每个程序轮流执行。 分时操作系统是把CPU的时间划分
SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。
Redis是目前广为人知的一个内存数据库,在各个场景中都有着非常丰富的应用,前段时间Redis推出了6.0的版本,在新版本中采用了多线程模型。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
CPU 并非 90% 的时间都在忙着,很大一部分时间在等待,或者说“停顿(Stalled)”了。这种情况表示处理器流水线停顿,一般由资源竞争、数据依赖等原因造成。多数情况下表现为等待访存操作,其中又以读操作为主。在停顿周期内,不能执行指令,这意味着你的程序不往前走。值得注意的是,图中 “Stalled” 状态所占的比例是作者依据生产环境中的典型场景计算而来,具有普遍现实意义。因此,大多时候 CPU 处于停顿状态,而你却不知道,因为 CPU 利用率这个指标没有告诉你真相。通过进一步分析 CPU 停顿的原因,可以指导代码优化,提高执行效率,这是我们深入理解CPU微架构的动力之一。
Linux内核的DL调度器是一个全局EDF调度器,它主要针对有deadline限制的sporadic任务。注意:这些术语已经在本系列文章的第一部分中说明了,这里不再赘述。在这本文中,我们将一起来看看Linux DL调度器的细节以及如何使用它。另外,本文对应的英文原文是https://lwn.net/Articles/743946/,感谢lwn和Daniel Bristot de Oliveira的分享。
微服务治理中限流、熔断、降级是一块非常重要的内容。目前市面上开源的组件也不是很多,简单场景可以使用Guava,复杂场景可以选用Hystrix、Sentinel。今天要说的就是Sentinel,Sentinel是一款阿里开源的产品,只需要做较少的定制开发即可大规模线上使用。从使用感受上来说,它有以下几个优点:
cpu scheduler负责调度两种资源:线程和中断 按优先级从高到低: 1)中断:设备告诉内核它们已经处理完成:如网卡发送完成了一个packet或是硬盘完成了一个io请求。 2)内核进程: 3)用户进程: ## 1. context switches:上下文切换 大多数的处理器在同一时刻只能运行一个进程,在多核处理器中,linux内核将每一个core当作一个独立的处理器。 一个内核可以同时运行50~50000个进程。如果只有一个c
作者新建了QQ群:460430320,供大家交流测试心得(培训机构勿进)。另外,还会不定期上传测试资料,也欢迎您共享测试资料。
大家都知道,在服务/应用发布到预览或者线上环境时,经常会出现一些测试中没有出现的问题。并且由于环境所限,我们也不可能在线上调试代码,所以只能通过日志、系统信息和dump等手段来在线上定位问题。
Android用户几乎每时每刻都在和显示交互;因此,良好的显示性能对于用户体验至关重要。然而,实现平滑如丝的性能并不总是那么容易。需要整个系统协同工作,并且内核并不总是像人们所希望的那样支持这种协作。Android小组目前正在考虑现有内核功能的多种组合以及可能的改进,以提供最佳的显示体验。
作者 | Lasse Vilhelmsen 译者 | 刘雅梦 策划 | 李冬梅 文描述了一个自动化的 CPU 垂直扩展系统的实现,在该系统中,优步(Uber)上运行的每个存储工作负载都被分配到了理想数目的内核。如今,该框架已被用于调整超过 50 万个 Docker 容器,自其建立以来,已净减少了超过 12 万个内核的分配,从而每年节省了数百万美元的基础设施支出。 在优步(Uber),我们在容器化环境中运行所有的存储工作负载,如 Docstore、 Schemaless、M3、MySQL、Cass
在 Linux 下我们通过 top 或者 htop 命令可以看到当前的 CPU 资源利用率,另外在一些监控工具中你可能也遇见过,那么它是如何计算的呢?在 Nodejs 中我们该如何实现?
解决这个问题的关键是要找到Java代码的位置。下面分享一下排查思路,以CentOS为例,总结为4步。
李盖,容器产品中心后台开发,负责腾讯云 TKE 的对内自研上云业务,主要负责集群调度、资源效率提升、集群稳定性等方向。 引言 在 K8s 集群运营过程中,常常会被节点 CPU 和内存的高使用率所困扰,既影响了节点上 Pod 的稳定运行,也会增加节点故障的几率。为了应对集群节点高负载的问题,平衡各个节点之间的资源使用率,应该基于节点的实际资源利用率监控信息,从以下两个策略入手: 在 Pod 调度阶段,应当优先将 Pod 调度到资源利用率低的节点上运行,不调度到资源利用率已经很高的节点上 在监控到节点资源率较
我们原先在服务器上想分析性能指标,需要执行一系列的linux命令。对于linux命令不熟悉的人来说,比较困难
如果Linux服务器突然访问卡顿变慢,负载暴增,如何在最短时间内找出Linux性能问题所在?
在平时的运维工作中,当一台服务器的性能出现问题时,通常会去看当前的CPU使用情况,尤其是看下CPU的负载情况(load average)。对一般的系统来说,根据cpu数量去判断。比如有2颗cup的机器。如果平均负载始终在1.2以下,那么基本不会出现cpu不够用的情况。也就是Load平均要小于Cpu的数量。 对于cpu负载的理解,首先需要搞清楚下面几个问题: 1)系统load高不一定是性能有问题。 因为Load高也许是因为在进行cpu密集型的计算 2)系统Load高不一定是CPU能力问题或数量不够。
在一次业务升级后,发现服务边的不稳定,zabbix各项监控指标相对上线前异常上升。
(ps:对于如何在Intel CPU,ARM架构CPU,以及Jetson TensorRT上部署深度学习模型,以及部署遇到的速度问题,该如何解决。请查看我的另外一篇文章。如何定制化编译Pytorch,TensorFlow,使得CNN模型在CPU,GPU,ARM架构和X86架构,都能快速运行,需要对每一个平台,有针对性的调整。如何做到最大化加速深度学习在不同平台部署性能。请看我的这篇文章。)
前言: 朋友遇到了load average偏高的问题,关于load average的解释,网上也是五花八门,有的说法甚至都有些不负责任。在这里详细分析一下load average。 分析: 1,l
当我们使用top命令查看系统的资源使用情况时会看到load average,如下图所示,它表示系统在1,5,15分钟的平均工作负载。 那么什么是负载(load)呢?它和CPU的利用率又有什么关系呢
在文章中,我们提到了 Linux 用来管理和限制 Linux 进程组资源使用的 CGroup 机制。本文我们就来详细介绍一下。
当您学会使用 eBPF 性能分析解锁详细洞察时,不可靠的数据将成为过去。了解如何细粒度且高效地监控 CPU、内存和网络数据。
研究显示,AI工程化落地过程中,出现痛点从高到底依次是资源利用率、大模型落地、分布式训练效率、推理效率、国产化、异构芯片调度。其中,资源利用率出现频率接近后面五名的总和。深挖痛点,其背后是资源分配不均衡、资源规划不合理、资源碎片多的问题。
top是linux程序员经常使用的分析机器运行状态的工具。但是并不是所有人都能清楚如何使用该工具对程序占用CPU资源的情况进行分析,比如图中us、sy、ni、id、wa和si等各是什么意思?高低都能说明什么问题?本文将抛砖引玉,讲解下该工具的使用。
我的意思是,你想让系统以及task的CPU利用率是多少它就是多少,一切都是由你的程序自己来 调制演奏。 这需要一种自指机制。
来源 | https://juejin.cn/post/6948034657321484318
目前市场上有许多开源监控工具可用于监控 Linux 系统的性能。当系统达到指定的阈值限制时,它可以发送电子邮件警报。它可以监视 CPU 利用率、内存利用率、交换利用率、磁盘空间利用率等所有内容。
现如今企业的数据查询需求在不断增多,在共享同一集群时,往往需要同时面对多个业务线或多种分析负载的并发查询。在有限的资源条件下,查询任务间的资源抢占将导致性能下降甚至集群不稳定,因此负载管理的重要性不言而喻。
在早期的单任务计算机中,用户一次只能提交一个作业,独享系统的全部资源,同时也只能干一件事情。进行计算时不能进行 IO 读写,但 CPU 与 IO 的速度存在巨大差异,一个作业在 CPU 上所花费的时间非常少,大部分时间在等待 IO。
领取专属 10元无门槛券
手把手带您无忧上云