最新将生产环境的服务器版本统一升级了一下,其中有一台(4H/8G)近两天天天CPU使用率报警(阀值>95%,探测周期60s,触发频率6次),而且load acerage也居高不下,检查了各个系统应用软件的资源使用都没有问题,也将一些可能导致CPU使用率高的软件stop掉,报警依旧。
CPU使用率:CPU的使用率 平均负载:单位时间内的活跃线程数 用户时间:CPU在用户进程上的实际百分比 系统时间:CPU在内核上花费的实际百分比 空闲时间:系统处于在等待IO操作上的时间总和 等待:CPU花费在等待IO操作上的时间总和 Nice时间:CPU优先执行的时间百分比
上一章我们介绍了shell编程的语法和应用,在实际生产环境中,Linux的系统运维者经常会查看系统中的各项性能、参数,为了提高查看效率,我们可以编写一些监控脚本以便系统的自动化运维。
知其然,更要知其所以然, ksoftirqd 进程会导致 CVM CPU 99%,背后的凶手是谁,让我们逐步揭开这个面纱。
今天就来好好学习下Linux下如何查看CUP的使用率: 监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。 对于每一个CPU来说运行队列最好不要超过3,例如,如果是双核CPU就不要超过6。如果队列长期保持在3以上,说明任何一个进程运行时都不能马上得到cpu的响应,这时可能需要考虑升级cpu。另外满负荷运行cpu的使用率最好是user空间保持在65%~70%,system空间保持在30%,空闲保持在0%~5% 。
glances是一个基于python语言开发,可以为linux或者UNIX性能提供监视和分析性能数据的功能。glances在用户的终端上显示重要的系统信息,并动态的进行更新,让管理员实时掌握系统资源的使用情况,而动态监控并不会消耗大量的系统资源,比如CPU资源,通常消耗小于2%,glances默认每两秒更新一次数据。同时glances还可以将相同的数据捕获到一个文件,便于以后对报告进行分析和图形绘制,支持的文件格式有.csv电子表格格式和和html格式。
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
atop就是一款用于监控Linux系统资源与进程的工具,它以一定的频率记录系统的运行状态,所采集的数据包含系统CPU、内存、磁盘、网络的资源使用情况和进程运行情况,并能以日志文件的方式保存在磁盘中,服务器出现问题后,可获取相应的atop日志文件进行分析。
平常处理服务器的问题遇到的最多的是负载高了,内存高了,io高了等问题,这里最明显的表现就是相关的监控指标了,对于诊断这种问题起到事半功倍的效果。
很多时候,手机发热发烫。是因为CPU使用率过高,CPU过于繁忙,会导致手机无法响应用户,整体性能降低,用户体验会很差,也容易引起ANR等一些列问题
傍晚时分,你坐在屋檐下,看着天慢慢地黑下去,心里寂寞而凄凉,感到自己的生命被剥夺了。当时我是个年轻人,但我害怕这样生活下去,衰老下去。在我看来,这是比死亡更可怕的事。--------王小波
我们日常经常会提及系统资源的使用状况,那么系统资源具体是指什么呢?其实系统资源主要分为两种,运行资源和存储资源
作者:jasonzxpan,腾讯 IEG 运营开发工程师 本文排查一个Linux 机器 CPU 毛刺问题,排查过程中不变更进程状态、也不会影响线上服务,最后还对 CPU 毛刺带来的风险进行了分析和验证。 本文中提到 CPU 统计和产生 core 文件的工具详见 simple-perf-tools 仓库。 问题描述 某服务所在机器统计显示,其 CPU 使用率在高峰时段出现毛刺。 暂时未收服务调用方的不良反馈。 初步排查 查看 CPU 1 分钟平均负载,发现 1 分钟平均负载有高有低,波动明显。说明
市面上有很多开源的监控告警工具,提供了丰富的、可视化的监控指标,以及告警能力,而对于服务器维度,抛开业务指标外,我们关注的无外乎cpu使用率、内存使用率和磁盘使用率等是否超过了我们既定的安全阈值,如果超过了则推送告警通知,来引起研发人员的关注,从而采取相应的应对措施。
Zabbix默认使用Zabbix agent监控操作系统,其内置的监控项可以满足系统大部分的指标监控,因此,在完成Zabbix agent的安装后,只需在前端页面配置并关联相应的系统监控模板就可以了。如果内置监控项不能满足监控需求,则可以通过system. run[command, <mode>]监控项让Zabbix agent运行想要的命令来获取监控数据。
项目中的一个需求是获取操作系统的相关信息, 在网上找了相关的资料,发现了一个好的玩意,就是Sigar,它是通过java api的方式来调用程序,基本上能够获取操作系统的全部信息,感觉挺强大的。Sigar(System Information Gatherer And Reporter),是一个开源的工具,提供了跨平台的系统信息收集的API,核心由C语言实现的,它可以被多种语言调用,包括C/C++、java、Perl、Ruby、PHP等,可以收集的信息包括:
集群内节点负载过高,频繁脱离集群,引起健康状态变化,节点分片未分配,影响集群业务。
介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具,以web的可视化方式展示系统及应用程序的实时运行状态(包括cpu、内存、硬盘输入/输出、网络等linux性能的数据)。Netdata的web前端响应很快,而且不需要Flash插件。UI很整洁,保持着 Netdata 应有的特性。具体内容文末会简单介绍。
Node Exporter 是用于暴露 *NIX 主机指标的 Exporter,比如采集 CPU、内存、磁盘等信息。采用 Go 编写,不存在任何第三方依赖,所以只需要下载解压即可运行。
在Linux系统中,Top命令是一种强大的系统监控工具,可以提供实时的系统性能信息,包括CPU、内存、进程等方面的数据。其中,检查和排序CPU使用率是Top命令的一项重要功能。本文将详细介绍如何使用Top命令来检查和排序CPU使用率,帮助你更好地了解系统的CPU性能。
Zabbix默认使用Zabbix agent监控操作系统,其内置的监控项可以满足系统大部分的指标监控,因此,在完成Zabbix agent的安装后,只需在前端页面配置并关联相应的系统监控模板就可以了。如果内置监控项不能满足监控需求,则可以通过system. run[command, <mode>]监控项让Zabbix agent运行想要的命令来获取监控数据。 下面介绍Zabbix对于Linux和Windows的监控。 安装Zabbix agent的过程就不赘述了,主要介绍一些关键的配置和功能。 1 操作系统
一、背景二、创建IAM角色和用户三、配置CloudWatch代理日志保留策略四、下载并安装代理安装包五、创建CloudWatch代理配置文件六、运行CloudWatchAgent参考
无论你是 Linux 系统管理员或是 DevOps 工程师,你都会在监控服务器性能指标的时候花费很长时间。
Exporter是Prometheus的指标数据收集组件。它负责从目标Jobs收集数据,并把收集到的数据转换为Prometheus支持的时序数据格式。和传统的指标数据收集组件不同的是,他只负责收集,并不向Server端发送数据,而是等待Prometheus Server 主动抓取,node-exporter 默认的抓取url地址:http://ip:9100/metrics。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。 目前业界有很多不错的开源产品可供选择。选择一款开源的监控系统,是一个省时省力、效率最高的方案。当然,对监控不是很明白的朋友们,看了以下文章可能会对监控整个体系有比较深刻的认识。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。目前业界有很多不错的开源产品可供选择。选择一款开源的监控系统,是一个省时省力、效率最高的方案。当然,对监控不是很明白的朋友们,看了以下文章可能会对监控整个体系有比较深刻的认识。
说真的,这就是《我想进大厂》系列第八篇,但是Linux的问题确实很少,就这样,强行编几个没有营养的问题也没啥意义。
在 Linux 中,获取系统信息和监控系统资源的操作是非常常见的任务。以下是一些常用的命令和工具,以及一些相关的系统文件,用于获取 Linux 系统信息和监控系统资源。
讲解 如何查看负载 和 并发之前,简单与各位聊几句,这不发现后来群内活跃度有所降低呀。是不是社群没小姐姐都不能吸引各位英雄好汉了,哈哈哈。
在上文性能基础之理解Linux系统平均负载和CPU使用率,我们详细介绍了 Linux 系统平均负载的相关概念,本文我们来做几个案例分析,以便于加深理解。
相信移动端高度普及的现在,大家或多或少都会存在电量焦虑,拥有过手机发热发烫的糟糕体验。而发热问题是一个长时间、多场景的指标存在,且涉及到端侧应用层、手机 ROM 厂商系统、外界环境等多方面的影响。如何有效衡量发热场景、定位发热现场、以及归因发热问题成为了端侧应用层发热监控的面前的三座大山。本文通过得物 Android 端侧现有的一些监控实践,不深入功耗计算场景无法自拔,优先聚焦于发热场景本身,希望能给大家一些参考。
sar是System Activity Reporter(系统活动情况报告)的缩写。sar工具将对系统当前的状态进行取样,然后通过计算数据和比例来表达系统的当前运行状态。它的 特点是可以连续对系统取样,获得大量的取样数据;取样数据和分析的结果都可以存入文件,所需的负载很小。sar是目前Linux上最为全面的系统性能分析 工具之一,可以从14个大方面对系统的活动进行报告,包括文件的读写情况、系统调用的使用情况、串口、CPU效率、内存使用状况、进程活动及IPC有关的 活动等,使用也是较为复杂。 sa
在top或htop命令的输出中,找到占用CPU过高的进程,并记录其进程ID(pid)。CPU使用率过高可能是因为某个进程使用了大量的系统资源。可以使用pidstat命令查看各个进程的资源使用量。
本文总结接口性能测试中,常见的性能指标概念,查看及通用通过标准 注: 本文只考虑B/S架构
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
大家有没这种感觉,不论甲方还是乙方,拿到一套数据库我们很难快速的知道他的配置,数据库状态以及性能状态
这些目录的存在和排列可能会因Linux发行版、操作系统版本或特定系统配置而有所不同。
响应时间长、超时,甚至不响应,这是最直观的表现;而CPU使用率极高或极低,频繁出现Full GC,这些需要借助系统日志或者监控辅助发现。
在我们项目部署上线的时候,我们是不是会经常去Linux服务器上查查服务器的CPU使用率,或者是运维经常会盯Linux的CPU使用率,发现监控报了60%的一般就会报警了,到了100%那就惨啦,做我开发的我们如果自己程序运行时CPU使用率一直是100%的话,那么,我们加班肯定逃不掉了,更打击我们自己的强大的自尊心。今天我就将我们线上之前有个100%的CPU给大家讲解下,然后教大家怎么去定位然后发现到具体的函数,然后去修改它就行了
CPU 上下文切换是保证 Linux 系统正常运行的核心功能。可分为进程上下文切换、线程上下文切换和中断上下文切换。
很多公司都使用界面化的监控工具,很酷炫,这说明,监控这块我们几乎都会接触到,大家是有想法的,其次在不同的目的下,选择不同的工具有着不同的目的,今天这篇文章我就给大家介绍酷炫的图形化监控小军刀netdata的使用。
Guider 是一款功能强大的全系统 Linux 性能分析器,旨在为开发人员、系统管理员和其他技术专业人员提供对 Linux 系统性能的深入洞察。它的目的是帮助用户识别和解决性能瓶颈,以便他们能够优化系统以实现最高效率。
https://www.cnblogs.com/poloyy/category/1806772.html
线上 CPU 高负载是许多运维工程师和开发人员经常面临的挑战之一。当 CPU 使用率升高时,系统性能可能会受到严重影响,因此快速定位问题所在至关重要。本文将介绍一些常见的技术和方法,帮助你迅速找到线上 CPU 高负载问题的根本原因,并提供实际代码示例。
Linux/Unix like OS 的文件系统中每个目录树中的节点,只包含了文件名和 Inode number Inode number 所找到对应于文件名的Inode 节点 Inode 节点中才真正记录了文件的大小/物理地址/所有者/访问权限/时间戳/被硬链接的次数等实际的 metadata IO 操作的时候,需要的资源除了磁盘空间以外,还要有剩余的 Inode
领取专属 10元无门槛券
手把手带您无忧上云