(1)为了加强可读性和避免隐含依赖,应使用下面的顺序:C标准库、C++标准库、其它库的头文件、你自己工程的头文件。不过这里最先包含的是首选的头文件,即例如a.cpp文件中应该优先包含a.h。首选的头文件是为了减少隐藏依赖,同时确保头文件和实现文件是匹配的。具体的例子是:假如你有一个cc文件(linux平台的cpp文件后缀为cc)是google-awesome-project/src/foo/internal/fooserver.cc,那么它所包含的头文件的顺序如下:
一个良好的编程规范和风格是一名程序猿成熟的标志。规范的编码可以减少代码冗余,降低出错概率,便于代码管理和代码交流等等,事实上,其作用远不止这些,我们要牢记编码规范在心中啊。
C语言一般提供三种预处理功能:宏处理、文件包含、条件编译。头文件防卫式申明中会用到条件编译中 #ifndef、#define、#endif 的用法。所以,首先价绍下条件编译。
glibc是提供系统条用和调用函数的C库,如open,malloc,printf等
3、hello.c是我们的源程序文件; 4、执行./hello 就可以看到程序的输出结果 查看gcc版本号: gcc -version 5、函数库:glibc
前两篇我们介绍了如何创建一个空的裸机工程(只有启动文件和main文件),并编译工程生成elf文件,然后将其转为bin格式或hex格式,使用openocd下载,最后编写了一个makefile雏形,并成功点亮了一个LED~ 但是这个LED我们是通过指针直接操作寄存器地址来完成的,接下来,我们在此基础上,引入stm32头文件,其中包含了寄存器的宏定义,也就是使用寄存器进行开发~
今天使用 man string 来查看 string 文件的使用的方法(毕竟里面的函数名字和传入参数和发挥参数的类型,如果一段时间不使用,会产生遗忘。)
本篇重点是讲LVGL的开发辅助工具,以及利用这些工具将LVGL制作UI之后移植到嵌入式Linux开发板上显示。
虽然我自己是在Linux环境上直接进行开发的,但也有许多的人是在Windows环境上从事开发工作的,如果离开自己熟悉的系统到陌生的环境上也许会影响到工作效率。
C 的设计思想是,把函数用作构件块来组织程序。前面我们用过了 C 标准库的函数,如 printf()、scanf()、getchar()、putchar() 和 strlen()。本篇我们进一步学习函数。
fatal error C1083: 无法打开包括文件:“unistd.h”: No such file or directory unistd.h是linux下的,windows不支持linux的系统调用。 头文件unistd.h是Linux/Unix的系统调用,包含了许多UNIX系统服务函数原型,如open、read、write、_exit、getpid等函数。在linux下能够编译通过的包含此头文件的程序,在VC下编译时出现了如下问题 fatal error C1083: Cannot open include file: ‘unistd.h’: No such file or directory 只要在默认库文件夹下(我的电脑是D:\Program Files\Microsoft Visual Studio\VC98\INCLUDE\)添加一个unistd.h文件即可,其内容如下:
1. 建立Uboot的SI工程 1.1首先给uboot打上补丁,然后来生成压缩文件
其中的一个 limits.h 会反过来包括对应的系统头文件 limits.h, 在我们的例子中,是 /tools/include/limits.h。
本文介绍了如何通过修改配置文件、编译内核、创建内核工程、烧写内核到开发板、运行内核、分析内核日志、输出内核转储、调试内核、使用内核调试器等工具和方法,来分析和解决内核问题。
gcc/g++是Linux中的编译器,vim是Linux中的编辑器。要想将代码运行起来还需要编译才可实现。 本篇文章,主要通过预处理、编译、汇编、链接来介绍gcc/g++。
gcc和cc是一样的,c++和g++是一样的。一般c程序就用gcc编译,c++程序就用g++编译
hello,大家好,今天我们继续学习Linux中的动静态库,我们将从不同的角度来学习如何使用,并如何制作一个可供他人使用的动静态库文件,并试着探究一下动态库加载问题。那我们就开始学习吧!!
#运算符 #运算符将宏的一个参数转换为字符串字面量。它仅允许出现在带参数的宏的替换列表中。 #运算符所执行的操作可以理解为”字符串化“。 当我们有一个变量 int a = 10; 的时候,我们想打印出: the value of a is 10 . 就可以写:
使用gcc编译器时,必须给出一系列必要的调用参数和文件名称。不同参数的先后顺序对执行结果没有影响,只有在使用同类参数时的先后顺序才需要考虑。如果使用了多个 -L 的参数来定义库目录,gcc会根据多个 -L 参数的先后顺序来执行相应的库目录。
今天分享的是如何一步步深入地学习Makefile。在Linux中编译代码,不像是Windows中有很多集成的IDE,Linux中都是通过基本的编译工具如gcc来进行,比如要编译main.c这个文件,可以使用gcc main.c -o main.但是如果源文件很多,这种方法就不适用了,所以,必须要学会使用Makefile。
在 C++ 中 , const 可以作为 替代 #define 宏定义 的手段 ;
6.4 交叉编译程序:以freetype为例 使用buildroot来给ARM板编译程序、编译库会很简单, 以后系统讲解buildroot时再使用buildroot。 现在我们还是手工交叉编译freetype,这种方法在编译、安装一些小程序时很有用。
比如在a.h中声明了一个类a,包含成员变量和成员函数的声明,在a.cpp中包含类a成员函数的定义(实现)
当在编译C/C++项目时遇到编译错误sys/cdefs.h: No such file or directory时,这通常表示缺少了系统头文件cdefs.h。这个问题可能出现在Linux、macOS或其他类Unix系统中。 在本文中,我们将会详细介绍这个错误的原因,并提供一些解决方案来解决这个问题。
Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的 最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。 那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追 随者的主要原因: 首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护 机制等等,这些都是非都源码不能体会的。 同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与 具体硬件不相关的平台;同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分 的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加 快系统对中断的处理。 最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位 置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率;他们总是在编码的同时,就考虑到了以后的代码 维护和升级。 甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真 正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正 确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。 所有源文件均是相对于目录/usr/src/linux的。 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的 Linux爱好者,和那些对源码分析很有兴趣但接触不多的人来说,这还是很有必要的。 1、Linux核心源程序通常都安装在/usr/src/linux下,而且它有一个非常简单的编号约定:任何偶数的核心(的二个数为偶数,例如 2.0.30)都是一个稳定地发行的核心,而任何奇数的核心(例如2.1.42)都是一个开发中的核心。 2、核心源程序的文件按树形结构进行组织,在源程序树的最上层,即目录/usr/src/linux下有这样一些目录和文件。 ◆ COPYING: GPL版权申明。对具有GPL版权的源代码改动而形成的程序,或使用GPL工具产生的程序,具有使用GPL发表的义务,如公开源代码。 ◆ CREDITS: 光荣榜。对Linux做出过很大贡献的一些人的信息。 ◆ MAINTAINERS: 维护人员列表,对当前版本的内核各部分都有谁负责。 ◆ Makefile: 第一个Makefile文件。用来组织内核的各模块,记录了个模块间的相互这间的联系和依托关系,编译时使用;仔细阅读各子目录下的Makefile文件 对弄清各个文件这间的联系和依托关系很有帮助。 ◆ ReadMe: 核心及其编译配置方法简单介绍。 ◆ Rules.make: 各种Makefilemake所使用的一些共同规则。 ◆ REPORTING-BUGS:有关报告Bug 的一些内容。 ● Arch/ :arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。PC机一般都基于此目录; ● Include/: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在 include/linux子目录下,与 intel c
我想查看linux下包含的一个头文件的源文件,如#include "a.h"。在C++编译器里直接右键就可以打开了,那么在linux下该怎么查看呢?或者怎么查看源文件所在的目录? 如果是系统的文件,那
我们发现,每一个不同文件的inode编号都不相同,所以inode可以说是用来标识文件的标识符。接下来,我们通过下面指令来给mysoft文件,创建软链接:
1 . 编译 FFMPEG 函数库 : 【Android FFMPEG 开发】FFMPEG 交叉编译配置 ( 下载 | 配置脚本 | 输出路径 | 函数库配置 | 程序配置 | 组件配置 | 编码解码配置 | 交叉编译配置 | 最终脚本 )
2. 软链接文件soft_file.link有自己独立的inode,可以被当作独立文件看待。 而硬链接文件没有自己独立的inode,无论改变myfile.txt什么内容,hard_file.link都会随着一起改变,所以建立硬链接,实际上根本没有创建新文件,因为没有给硬链接分配独立的inode。
配置该环境主要是配合 Android 进行开发 , 目前 Android 中调用 C/C++ 代码使用的都是 CMake 构建项目 , 因此在次数 VS 中要使用 CMake 构建 FFMPEG 的开发环境 ;
三、改变出生的static和extern 1.程序是怎样炼成的?IDE的发展带来的一个好处就是在写程序更多的可以关注在写这件事情上了,比如在vc里面,当你酣畅淋漓的写完一段程序之后,点击一下debug就可以享受到程序运行起来的好感,但是IDE带来的一个负面影响就是对ASCII码写成的代码如何转换成二进制的计算机程序掩盖的越来越多,虽然说不懂这些在绝大多数情况下对写程序也没什么影响,但是面试的时候如果你能有这方面的知识那绝对是加很多分的,而且现在来说很多时候面试这也成了一个基础的内容,特别是面试linux下开
2021 年 11 月,我们决定评估 arm64 架构在 Uber 的可行性。我们的大多数服务是用 Go 或 Java 编写的,但我们的构建系统只能编译成 x86_64。现在,得益于开源合作,Uber 拥有了一个独立于系统的构建工具链,可以无缝地支持多种架构。我们使用这个工具链来引导 arm64 主机。本文将分享我们是如何着手去做这件事情的,以及我们早期的想法、遇到的问题、达成的一些成就和未来的方向。
在ANSI C的任何一种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换为可执行的机器指令。 第2种是执行环境,它用于实际执行代码。
1 . Android 版本目录 : platforms 中存储了各个 Android 版本编译时需要的动态库与静态库资源 , 如 android-29 中就是该版本对应的本地库资源 ;
要注意,这是在windows环境下,在Linux环境下并不以后缀区分文件类型,而是通过:ll 指令,会显示如下信息:
}内部写了几句
在C/C++中,所有的代码在输出结果前都需要经过这五个阶段:预编译—>编译—>汇编—>链接—>执行代码。其中前四个阶段是在翻译环境下进行,因为在翻译环境中有编译器和链接器这两个重要工具,二者配合能将文本形式的代码转化为对应的二进制代码和可执行文件;而最后一个阶段是在执行环境中进行的,代码在这个阶段已经打包好了,只需要执行器运行此代码,结果就能很好的输出。可以看出,整个代码运行逻辑是极其严谨和巧妙的。除程序环境外,C/C++在预处理阶段还有各式各样的预处理指令等着我们去发掘,一起来看看吧!
c++中自带了一些非常强大却鲜为人知的功能库—pd_ds库 里面含有红黑树(rb_tree),哈希表(gp_hash_table),可持久化平衡树(rope)等超强数据结构 但是有一件非常令人头痛的事
============================================================================= 涉及到的知识点有:include有两种用法、{}大括号用法解释、C语言自定义名字的要求、 c语言库函数printf的解释、编译错误有两种、调用system函数、c语言编译过程、 操作系统结构、指令集中的cpu架构 、QT常用快捷键、vs常用快捷键
我们在使用Linux的时候,不禁会有这么一个疑问:为什么我们能够在Linux下进行c/c++代码的编写以及编译呢?这是因为Linux系统默认携带了语言级别的头文件以及语言所对应的库。
为什么会写这样一篇“无效水文”,我想是由于我的这样一种强迫症,对于任何的学习,在不理解原理,无法把他与我的已知知识架构产生联系的时候,我会本能地拒绝这种知识,所以由于这种偏执,很多情况下拖慢了自己的进度,因为很多时候无法有效收集到有用的资料,软件实训的时候,老师只会丢给一个配置文件,然后在此基础上做一些修改开发,可以除了可以勉强做一个垃圾出来,没有任何意义。就连再去做一个垃圾的能力都没有。这种情况直到毕业我才感觉无法再继续这样的生活了,于是开始大量学习,阅读专业书籍。这次就想对这些原本困扰我的东西进行一次小的抛砖引玉式的总结,当然也是把别人已经写过的一些文章综合一下,让入门的人对此好奇的人产生初步印象。 总之,人生没有白走的路。五年之前你正在梦想你今天的生活。 还有,当我们在经历冬季的时候,新西兰正被春风吹拂。所以做自己认为对的事情吧。
这次主要记录在windows下嵌入python解释器的过程,程序没有多少,主要是头文件与库文件的提取。
一般来讲函数和宏的使用语法很相似,所以语言本身没法帮我们区分二者,那我们平时的一个习惯是:
在上一篇文章《eBPF动手实践系列二:构建基于纯C语言的eBPF项目》中,我们初步实现了脱离内核源码进行纯C语言eBPF项目的构建。libbpf库在早期和内核源码结合的比较紧密,如今的libbpf库更加成熟,已经完全脱离内核源码独立发展。
在C、C++中我们使用过标准库,比如在使用strerror、vector、string等时,都只是调用了这些函数接口,这些都是需要具体的实现。
要学会制作动态库,必须要有软硬链接知识的基础,大家可以移步至该文章:软链接和硬链接的详解 (Linux系统下)-CSDN博客
通过阅读README知道,go1.txt可以通过go tool api命令生成。而通过go1.txt可以做成编辑器的api自动提示,比如Vim:VimForGo next.txt是一些将来可能加入的API
在项目开发过程中,经常需要用到第三方库,需要在QtCreator工程里指定第三库的路径、头文件路径、引用的库名称等等;并且可能还需要编写通用工程针对不同的编译器类型,位数选择不同的库,针对不同的操作系统环境选择不同的库;那么这些条件的区分都可以在QtCreator的pro工程文件里编写逻辑实现。
领取专属 10元无门槛券
手把手带您无忧上云