在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
通用操作系统,通常都会开启mmu来支持虚拟内存管理,而页表管理是在虚拟内存管理中尤为重要,本文主要以回答几个页表管理中关键性问题来解析Linux内核页表管理,看一看页表管理中那些鲜为人知的秘密。
在用户的视角里,每个进程都有自己独立的地址空间,A进程的4GB和B进程4GB是完全独立不相关的,他们看到的都是操作系统虚拟出来的地址空间。但是呢,虚拟地址最终还是要落在实际内存的物理地址上进行操作的。操作系统就会通过页表的机制来实现进程的虚拟地址到物理地址的翻译工作。其中每一页的大小都是固定的。这一段我不想介绍的太过于详细,对这个概念不熟悉的同学回去翻一下操作系统的教材。
本文旨在深入探讨Linux操作系统的虚拟内存管理机制。我们将从基本概念开始,逐步深入到内核级别的实现细节。为了达到这个目标,本文将结合理论讨论和实际的代码分析。我们希望通过这种方式,使读者对Linux虚拟内存管理有更深入的理解。
操作系统用于处理内存访问异常的入口操作系统的核心任务是对系统资源的管理,而重中之重的是对CPU和内存的管理。为了使进程摆脱系统内存的制约,用户进程运行在虚拟内存之上,每个用户进程都拥有完整的虚拟地址空间,互不干涉。而实现虚拟内存的关键就在于建立虚拟地址(Virtual Address,VA)与物理地址(Physical Address,PA)之间的关系,因为无论如何数据终究要存储到物理内存中才能被记录下来。
在32bit中的Linux内核中一般采用3层映射模型,第1层是页面目录(PGD),第2层是页面中间目录(PMD),第3层才是页面映射表(PTE)。但在ARM32系统中只用到两层映射,因此在实际代码中就要3层映射模型中合并一层。在ARM32架构中,可以按段(section)来映射,这时采用单层映射模式。使用页面映射需要两层映射结构,页面的选择可以是64KB的大页面或4KB的小页面,如图2.4所示。Linux内核通常使用4KB大小的小页面。
对于没有启用物理地址扩展的32位系统,两级页表已经足够了。从本质上说Linux通过使“页上级目录”位和“页中间目录”位全为0,彻底取消了页上级目录和页中间目录字段。不过,页上级目录和页中间目录在指针序列中的位置被保留,以便同样的代码在32位系统和64位系统下都能使用。内核为页上级目录和页中间目录保留了一个位置,这是通过把它们的页目录项数设置为1,并把这两个目录项映射到页全局目录的一个合适的目录项而实现的。
本文介绍了地址空间和二级页表、Linux下的线程、线程的优缺点以及线程与进程的关系等概念。
大家在看内核代码时会经常看的以上术语,但在ARM的芯片手册中并没有用到这些术语,而是使用L1,L2,L3页表这种术语。
操作系统确实是比较难啃的一门课,至少我认为比计算机网络难太多了,但它的重要性就不用我多说了。
在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。
作者:Cheetah老师一直从业于半导体行业,他曾为U-boot社区和Linux内核社区提交过若干补丁。目前主要从事Linux相关系统软件开发工作,负责Soc芯片BringUp及系统软件开发,喜欢阅读内核源代码,在不断的学习和工作中深入理解内存管理,进程调度,文件系统,设备驱动等内核子系统。
本文涉及的硬件平台是X86,如果是其他平台的话,如ARM,是会使用到MMU,但是没有使用到分段机制; 最近在学习Linux内核,读到《深入理解Linux内核》的内存寻址一章。原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解。于是,查找了很多资料,最终理顺了内存寻址的知识。现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处。
基于ARMv8-A架构的处理器最大可以支持到48根地址线,也就是寻址2的48次方的虚拟地址空间,即虚拟地址空间范围为0x0000_0000_0000_0000~0x0000_FFFF_FFFF_FFFF,共256TB。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
虚拟内存是一种操作系统提供的机制,用于将每个进程分配的独立的虚拟地址空间映射到实际的物理内存地址空间上。通过使用虚拟内存,操作系统可以有效地解决多个应用程序直接操作物理内存可能引发的冲突问题。
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。
在介绍 HugePages 之前,我们先来回顾一下 Linux 下 虚拟内存 与 物理内存 之间的关系。
前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制,即
1)将内存看做缓存,内存中存储此时正在运行的数据,其他数据存到磁盘,当需要使用时再换入内存,内存不够时将不用的换出到磁盘。
Linux 内核修复办法:内核页表隔离KPTl(kernel page table isolation)
http://bbs.chinaunix.net/thread-2083672-1-1.html
与硬件相关的代码全部放在 arch(architecture 一词的缩写,即体系结构相关)目录下。
只针对32位的操作系统,设计一个二级页表,目的是构建一个简易的能跑起来的操作系统。对于4G的地址空间,每个页大小是4K,模仿Linux早期的做法,32位地址的前10位为页目录项,中间10位为页表,后面10位为偏移量。
前言:在讲完环境变量后,相信大家对Linux有更进一步的认识,而Linux进程概念到这也快接近尾声了,现在我们了解Linux进程中的地址空间!
/* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading wa
之前写过一篇《CPU是如何访问内存的?》的文章,简单介绍了cpu访问内存的过程。有了之前的感性认识,这篇站在arm的角度再深度讲解一下,看完你会发现不理解arm原理就直接撸内核代码简直是耍流氓。
MMU概念介绍 MMU分为两个部分: TLB maintenance 和 address translation MMU的作用,主要是完成地址的翻译,无论是main-memory地址(DDR地址),还是IO地址(设备device地址),在开启了MMU的系统中,CPU发起的指令读取、数据读写都是虚拟地址,在ARM Core内部,会先经过MMU将该虚拟地址自动转换成物理地址,然后在将物理地址发送到AXI总线上,完成真正的物理内存、物理设备的读写访问。 下图是一个linux kernel系统中宏观的虚拟地址到物
常见的内存分配函数有malloc,mmap等,但大家有没有想过,这些函数在内核中是怎么实现的?换句话说,Linux内核的内存管理是怎么实现的?
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁转载
随着linux的代码更新,阅读linux-4.15代码,从中发现很多与众不同的地方。之所以与众不同,就是因为和我之前从网上博客或者书籍中看到的内容有所差异。当然了,并不是为了表明书上或者博客的观点是错误的。而是因为linux代码更新的太快,网上的博客和书籍跟不上linux的步伐而已。究竟是哪些发生了差异了?例如:kernel image映射区域从原来的linear mapping region(线性映射区域)搬移到VMALLOC区域。因此,我希望通过本篇文章揭晓这些差异。当然,我相信不久的将来这篇文章也将会成为一段历史。
我们知道程序代码和数据必须驻留在内存中才能得以运行,然而系统内存数量很有限,往往不能容纳一个完整程序的所有代码和数据,更何况在多任务系统中,可能需要同时打开子处理程序,画图程序,浏览器等很多任务,想让内存驻留所有这些程序显然不太可能。因此首先能想到的就是将程序分割成小份,只让当前系统运行它所有需要的那部分留在内存,其它部分都留在硬盘。当系统处理完当前任务片段后,再从外存中调入下一个待运行的任务片段。的确,老式系统就是这样处理大任务的,而且这个工作是由程序员自行完成。但是随着程序语言越来越高级,程序员对系统体系的依赖程度降低了,很少有程序员能非常清楚的驾驭系统体系,因此放手让程序员负责将程序片段化和按需调入轻则降低效率,重则使得机器崩溃;再一个原因是随着程序越来越丰富,程序的行为几乎无法准确预测,程序员自己都很难判断下一步需要载入哪段程序。因此很难再靠预见性来静态分配固定大小的内存,然后再机械地轮换程序片进入内存执行。系统必须采取一种能按需分配而不需要程序员干预的新技术。
目前主要的 CPU 虚拟化技术是 Intel 的 VT-x/VT-i 和 AMD 的 AMD-V 这两种技术。
最近一直在学习内存管理,也知道MMU是管理内存的映射的逻辑IP,还知道里面有个TLB。
内存是计算机的重要资源,虽然今天大多数的服务对内存的需求都没有那么高,但是数据库以及 Hadoop 全家桶这些服务却是消耗内存的大户,它们在生产环境动辄占用 GB 和 TB 量级的内存来提升计算的速度,Linux 操作系统为了更好、更快地管理这些内存并降低开销引入了很多策略,我们今天要介绍的是 HugePages,也就是大页[^1]。
KSMA的全称是Kernel Space Mirror Attack,即内核镜像攻击。本文主要记录对该攻击方法的原理分析以及Linux内核中相关内存管理部分。
面试的时候经常会被问到 malloc 的实现。从操作系统层面来说,malloc 确实是考察面试者对操作系统底层的存储管理理解的一个很好的方式,涉及到虚拟内存、分页/分段等。下面逐个细说。
如上图,程序1、程序2、程序3装入到内存,而程序2运行完成被换出,内存空闲出20k,然后进来程序4,大小为25K,此时,只有两处空闲块,10K和20K,没有一处是符合条件的,应该怎么办?一个明显的办法就是将两块空闲区域进行合并,形成一个大小为30K的空闲块满足程序4。
Linux内核由于存在page cache, 一般修改的文件数据并不会马上同步到磁盘,会缓存在内存的page cache中,我们把这种和磁盘数据不一致的页称为脏页,脏页会在合适的时机同步到磁盘。为了回写page cache中的脏页,需要标记页为脏。
③ 引导内存分配器 : 页分配器 , 块分配器 , 不连续页分配器 , 连续内存分配器 , 每处理器内存分配器 ;
Linux 内存管理模型非常直接明了,因为 Linux 的这种机制使其具有可移植性并且能够在内存管理单元相差不大的机器下实现 Linux,下面我们就来认识一下 Linux 内存管理是如何实现的。
TLB 是页表项的物理 cache,用于加速虚拟地址到物理地址的转换。CPU 在访问一个虚拟地址时,首先会在 TLB 中查找,如果找不到对应的表项,那么就称之为 TLB miss,此时就需要去内存里查询页表,如果页表项是合法的,那么就会把它添加到 TLB 中。如果内核修改了页表,那么就需要主动的去清空一下当前的 TLB。
虚拟内存是实现分段和分页的关键所在,而分段和分页是操作系统管理内存的两个核心机制。
领取专属 10元无门槛券
手把手带您无忧上云