在Windows操作系统中,每个进程的虚拟地址空间都被划分为若干内存块,每个内存块都具有一些属性,如内存大小、保护模式、类型等。这些属性可以通过VirtualQueryEx函数查询得到。
内存映射 概念 : " 内存映射 “ 就是在 进程的 ” 用户虚拟地址空间 " 中 , 创建一个 映射 , " 内存映射 " 有
说到监控CPU,目前主要是监控CPU的使用率,以及每一个进程占用CPU资源,Linux系统中主要使用 top、vmstat、pstree 三个命令。
看了下面所有的回答,要么是没有回答到点上,要么是回答不够深入,所以,借助本文,深入讲解C/C++内存管理。
Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多。所以,监控 Redis 的内存消耗并了解 Redis 内存模型对高效并长期稳定使用 Redis 至关重要。
Linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的。而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间通信方面的侧重点有所不同。前者对Unix早期的进程间通信手段进行了系统的改进和扩充,形成了“system V IPC”,通信进程局限在单个计算机内;后者则跳过了该限制,形成了基于套接口(socket)的进程间通信机制。Linux则把两者继承了下来,如图示:
期待的效果就像 PCHuntor 里的那样,如下: 上代码 #include "stdafx.h" #include <Windows.h> #include <vector> #include <iostream> #include <assert.h> #include <psapi.h> #include <tlhelp32.h> using namespace std; /*枚举指定进程所有内存块 assert(hProcess != nullptr); 参数: hProcess:
在进程的_EPROCESS中有一个_RTL_AVL_TREE类型的VadRoot成员,它是一个存放进程内存块的二叉树结构,如果我们找到了这个二叉树中我们想要隐藏的内存,直接将这个内存在二叉树中抹去,其实是让上一个节点的EndingVpn指向下个节点的EndingVpn,类似于摘链隐藏进程,就可以达到隐藏的效果。
目前大部分的操作系统和应用程序并不需要16EB( 2^64 )如此巨大的地址空间, 实现64位长的地址只会增加系统的复杂度和地址转换的成本, 带不来任何好处. 所以目前的x86-64架构CPU都遵循AMD的Canonical form, 即只有虚拟地址的最低48位才会在地址转换时被使用, 且任何虚拟地址的48位至63位必须与47位一致(sign extension). 也就是说, 总的虚拟地址空间为256TB( 2^48 )
组件介绍 在iOS App中,有两种闪退是让人深恶痛绝的,一种是异常退出,另外一种是爆内存杀进程。前者已经有完备的工具协助定位分析,而后者却一直是业界的难以治愈的毒瘤。你是否遇到过线上App因为爆内存导致频繁闪退却又无法获得堆栈信息进行有效定位的困境?你是否费劲心思拿到JestsamEvent文件(系统爆内存日志)却依然束手无策?本文将介绍一款IOS爆内存分析利器,它可以以极其微小的代价让藏匿极深的爆内存罪魁祸首无处遁形——OOMDetector。 OOMDetector是手Q自研的IOS内存监控组件,腾讯
在《你真的理解内存分配》一文中,我们介绍了 malloc 申请内存的原理,但其在内核怎么实现的呢?所以,本文主要分析在 Linux 内核中对堆内存分配的实现过程。
从 Linux 内核 2.6.25 开始,CGroup 支持对进程内存的隔离和限制,这也是 Docker 等容器技术的底层支撑。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
今天看了几篇关于后台开发的面试经验贴,感受到了来自面试官的满满恶意。 主要考察领域:
谈到让Go程序监控自己进程的资源使用情况,那么就让我们先来谈一谈有哪些指标是需要监控的,一般谈论进程的指标最常见的就是进程的内存占用率、CPU占用率、创建的线程数。因为Go语言又在线程之上自己维护了Goroutine,所以针对Go进程的资源指标还需要加一个创建的Goroutine数量。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
性能压测场景 1、本次需要对查询接口进行100、200、500并发逐渐递增方式进行性能压测 2、在压测过程中,100、200并发响应时间、吞吐量、报错率为0,满足性能需求 3、当并发用户为500时,报错率达到22%,此时经过监控服务器,发现服务器cpu、内存、硬盘、网络、应用服务gc情况未出现异常,满足指标 4、经过排查,本次应用服务使用的是Dubbo服务,通过修改jmeter断言,返回响应结果提示threadpool is exhausted ,detail msg:Thread poo
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
每个程序拥有自己的地址空间,这个地址空间被分割成多个块,每一块称为一页 (Page, 4KB)。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
之前的文章所说的都是如何优化一条指令执行的速度(比如并发,乱序,分支预测,加相同电路让某个频繁操作可以同时进行处理),另外一种提升性能的方式就是 同时运行多个指令流,使用多核处理器:
本文来源:原创投稿 *爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。
进程使用许多不同的资源来实现其目标。其中包括部分或全部 CPU 周期、内存、外部存储、网络带宽等。这篇文章是关于内存使用的。具体来说,它处理为数据存储分配的内存,例如:
一般 Unix 系统中,用户态的程序通过malloc()调用申请内存。如果返回值是 NULL, 说明此时操作系统没有空闲内存。这种情况下,用户程序可以选择直接退出并打印异常信息或尝试进行 GC 回收内存。然而 Linux 系统总会先满足用户程序malloc请求,并分配一片虚拟内存地址。只有在程序第一次touch到这片内存时,操作系统才会分配物理内存给进程。具体我们可以看下如下demo:
这个文件记录着比较详细的内存配置信息,使用 cat /proc/meminfo 查看。
来源:IBM 译者:ljianhui 链接:blog.csdn.net/ljianhui/article/details/46718835 1.1 Linux进程管理 进程管理是操作系统的最重要的功能之一。有效率的进程管理能保证一个程序平稳而高效地运行。 Linux的进程管理与UNIX的进程管理相似。它包括进程调度、中断处理、信号、进程优先级、上下文切换、进程状态、进度内存等。 在本节中,我们将描述Linux进程管理的基本原理的实现。它将更好地帮助你理解Linux内核如何处理进程及其对系统性能的影响。
本文为IBM RedBook的Linux Performanceand Tuning Guidelines的1.1节的翻译 原文地址:http://www.redbooks.ibm.com/redpapers/pdfs/redp4285.pdf 原文作者:Eduardo Ciliendo, Takechika Kunimasa, Byron Braswell 1.1 Linux进程管理 进程管理是操作系统的最重要的功能之一。有效率的进程管理能保证一个程序平稳而高效地运行。 Linux的进程管理与UNIX的进
Linux进程管理 进程管理是操作系统的最重要的功能之一。有效率的进程管理能保证一个程序平稳而高效地运行。 Linux的进程管理与UNIX的进程管理相似。它包括进程调度、中断处理、信号、进程优先级、上下文切换、进程状态、进度内存等。 在本节中,我们将描述Linux进程管理的基本原理的实现。它将更好地帮助你理解Linux内核如何处理进程及其对系统性能的影响。 什么是进程? 一个进程是一个运行在处理器的程序的一个实例。该进程使用Linux内核能够处理的任何资源来完成它的任务。 所有运行在Linux操作系统中
Java 凭借着自身活跃的开源社区和完善的生态优势,在过去的二十几年一直是最受欢迎的编程语言之一。步入云原生时代,蓬勃发展的云原生技术释放云计算红利,推动业务进行云原生化改造,加速企业数字化转型。
返回此进程是否正在运行。它还检查PID是否已被另一个进程重用,在这种情况下返回False。
需要获取某程序运行过程中的内存消耗,一般情况可以使用 top 命令来人工分析,不过我遇到一个程序其内部调用包括 python, R, 以及一系列 linux 命令,这就导致人工统计不太现实
C语言提供了动态内存管理功能, 在C语言中, 程序员可以使用 malloc() 和 free() 函数显式的分配和释放内存. 关于 malloc() 和free() 函数, C语言标准只是规定了它们需要实现的功能, 而没有对实现方式有什么限制, 这多少让那些追根究底的人感到有些许迷茫, 比如对于 free() 函数, 它规定一旦一个内存区域被释放掉, 那么就不应该再对其进行任何引用, 任何对释放区域的引用都会导致不可预知的后果 (unperdictable effects). 那么, 到底是什么样的不可预知后果呢? 这完全取决于内存分配器(memory allocator)使用的算法. 这篇文章试图对 Linux glibc 提供的 allocator 的工作方式进行一些描述, 并希望可以解答上述类似的问题. 虽然这里的描述局限于特定的平台, 但一般的事实是, 相同功能的软件基本上都会采用相似的技术. 这里所描述的原理也许在别的环境下会仍然有效. 另外还要强调的一点是, 本文只是侧重于一般原理的描述, 而不会过分纠缠于细节, 如果需要特定的细节知识, 请参考特定 allocator 的源代码. 最后, 本文描述的硬件平台是 Intel 80x86, 其中涉及的有些原理和数据可能是平台相关的.
最近开始学习Python自动化运维,特记下笔记。 学习中使用的系统是Kali Linux2017.2,Python版本为2.7.14+ 因为在KALI里面没有自带psutil模块,需要使用pip进行安装
在Linux中,每个进程分配的资源是有限制的,以防止某个进程耗尽系统资源,从而影响其他进程的正常运行。开发人员需要时刻关注这些资源的使用情况,避免资源异常导致系统问题。
在服务器运维过程中,经常需要对服务器的各种资源进行监控,例如:CPU的负载监控,磁盘的使用率监控,进程数目监控等等,以在系统出现异常时及时报警,通知系统管理员。本文介绍在Linux系统下几种常见的监控需求及其shell脚本的编写。
在 Linux 系统中,除了普通的文件系统外,还存在一些伪文件系统,也称为虚拟文件系统或特殊文件系统。这些文件系统不是真正的物理存储设备,而是一些特殊的文件和目录,它们提供了对系统资源的访问接口,如内存、进程、网络等。本文将介绍常见的 Linux 伪文件系统及其作用。
透明巨页(Transparent hugepage, THP)特性自动化了创建和管理巨页的任务。内核守护进程(khugepage)在后台运行,将空闲页面拼接在一起形成/free大页面。
用户空间(User Space) :用户空间又包括用户的应用程序(User Applications)、C 库(C Library) 。
目前市场上的虚拟化技术种类很多,例如moby(docker)、LXC、RKT等等。在带来方便应用部署和资源充分利用的好处的同时,如何监控相应Container及其内部应用进程成为运维人员不可避免遇到的新情况。UAV.Container从虚拟化技术的基础原理和Linux操作系统的内核特性出发,得到Container容器和内部进程的各维度监控数据,使无论是虚拟机或物理机运维人员,还是业务运维人员角度,都能得到合适的监控维度。
Stack - 所有函数的 local variables, arguments 和 return address 的存放内存区域
通过这三篇文章的学习我们知道,无论内核进程还是用户进程,都是可以用task_struct来描述的,那么本篇我们实践下如何通过task_struct字段把系统中所有的进程包含的信息打印出来,比如:属性信息,状态,进程标识符,优先级信息,亲属关系,文件系统信息,内存方面的信息等。
我们知道redis的数据都保存在内存中,如何高效利用内存变得尤为重要。这里主要从内存消耗、管理内存的原理与方法、内存优化技巧三个方面来讲述如何高效实现内存的存储。今天仅描述内存消耗相关知识。
进程启动后,在 jemalloc 载入的时候会调用 jemalloc_constructor 执行一些初始化操作。这里利用了编译器的一些特殊支持,让函数在库加载的时候就执行了,有兴趣的可以根据代码看看 jemalloc_constructor 做了些什么。
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
领取专属 10元无门槛券
手把手带您无忧上云