硬盘的物理结构是比较复杂的,这里我们只需要知道最常用到的几个术语即可,也就是chs寻址中所涉及到的结构
磁盘的组成:主要由盘片、机械手臂、磁头、与主轴马达所组成。而数据的写入其实是在盘片上面。盘片上面又可细分出扇区(Sector)与柱面(Cylinder)两种单位,其中扇区每个为512bytes那么大。假设磁盘只有一个盘片,那么盘片如图所示:
硬盘扇区如上图划分,在系统扇区中,存在分区启动扇区(PBR),在MBR分区中存在主启动扇区。
硬盘中一般会有多个盘片组成,每个盘片包含两个面,每个盘面都对应地有一个读/写磁头。受到硬盘整体体积和生产成本的限制,盘片数量都受到限制,一般都在5片以内。盘片的编号自下向上从0开始,如最下边的盘片有0面和1面,再上一个盘片就编号为2面和3面。
参数: -c :建立一个压缩文件的参数指令(create 的意思); -x :解开一个压缩文件的参数指令! -t :查看 tarfile 里面的文件! 特别注意,在参数的下达中, c/x/t 仅能存在一个!不可同时存在! 因为不可能同时压缩与解压缩。 -z :是否同时具有 gzip 的属性?亦即是否需要用 gzip 压缩? -j :是否同时具有 bzip2 的属性?亦即是否需要用 bzip2 压缩? -v :压缩的过程中显示文件!这个常用,但不建议用在背景执行过程! -f :使用档名,请留意,在 f 之后要立即接档名喔!不要再加参数! 例如使用『 tar -zcvfP tfile sfile』就是错误的写法,要写成 『 tar -zcvPf tfile sfile』才对喔! -p :使用原文件的原来属性(属性不会依据使用者而变) -P :可以使用绝对路径来压缩! -N :比后面接的日期(yyyy/mm/dd)还要新的才会被打包进新建的文件中! --exclude FILE:在压缩的过程中,不要将 FILE 打包! 范例: 范例一:将整个 /etc 目录下的文件全部打包成为 /tmp/etc.tar [root@linux ~]# tar -cvf /tmp/etc.tar /etc
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用户空间
然后,就傻眼了。我的 Mac 电脑无法写入移动硬盘,因为移动硬盘的默认文件系统是 NTFS,Mac 不支持写入 NTFS。
Linux上的文件系统一般来说就是EXT2或EXT3,但这篇文章并不准备一上来就直接讲它们,而希望结合Linux操作系统并从文件系统建立的基础——硬盘开始,一步步认识Linux的文件系统。
一、Linux内核的组成 相关概念: Linux系统的组成部分:内核+根文件系统 内核:进程管理、内存管理、网络协议栈、文件系统、驱动程序。 IPC(Inter-Process Communication进程间通信):就是指多个进程之间相互通信,交换信息的方法。Linux IPC基本上都是从Unix平台上继承而来的。主要包括最初的Unix IPC,System V IPC以及基于Socket的IPC。另外,Linux也支持POSIX IPC。 运行中的系统环境可分为两层:内核空间、用
电脑启动后,CPU逻辑电路被设计为只能运行内存中的程序,没有能力直接运行存在于软盘或硬盘中的操作系统,如果想要运行,必须要加载到内存(RAM)中。
安装linux,vista/win7双系统后,怎么引导是个问题 理论上,可以从windows的boot loader引导linux,也可以linux的grub引导windows 但windows更霸道,经常霸占MBR,所以最好是linux不放MBR,然后从windows的boot loader引导linux 把linux装在自己的分区,不要在MBR 然后把linux分区的头512字节弄成一个文件,拷到boot loader所在的分区根下 dd if=/dev/sda1 of=/tmp/linux.bin bs=512 count=1 cp /tmp/linux.bin /media/你的window c分区 到windows上执行: bcdedit /create /d “GRUB” /application BOOTSECTOR 下面的{LinuxID}改为此命令输出的id bcdedit /set {LinuxID} device boot bcdedit /set {LinuxID} PATH \linux.bin bcdedit /displayorder {LinuxID} /addlast bcdedit /timeout 10
磁盘存储和文件系统管理 1. 磁盘结构 1.1设备文件 1. 设备类型: 2. 磁盘设备的设备文件命名: 3. 虚拟磁盘: 4. 不同磁盘标识:a-z,aa,ab… 5. 同一设备上的不同分区:1,2, ... 6. 创建设备文件 7. 工具 dd 常用选项 示例 demo 8. hexdump指令 1.2 硬盘类型 1.硬盘接口类型 2. 服务器硬盘大小 3. 机械硬盘和固态硬盘 4. 硬盘存储术语 CHS CHS LBA(logical block addressing) 5. 识别SSD和机械硬盘类型
tar命令 解压文件到指定目录:tar -zxvf /home/zjx/aa.tar.gz -C /home/zjx/pf tar [-cxtzjvfpPN] 文件与目录.... 参数: -c :建立一个压缩文件的参数指令(create 的意思); -x :解开一个压缩文件的参数指令! -t :查看tarfile 里面的文件! 特别注意,在参数的下达中,c/x/t 仅能存在一个!不可同时存在! 因为不可能同时压缩与解压缩。 -z :是否同时具有gzip 的属性?亦即是否需要用gzip 压缩? -j :是否同
前些天群友@Seraph_JACK在整引导,于是我也跟着云了一下。结果发现,我对引导相关的了解着实拉跨。所以趁此机会,正好完整学习一下引导相关的知识。本篇文章大致会涉及MBR、GPT、UEFI等内容,以使用Grub引导Linux为例,来分析启动的具体过程。
insmod命令用于将给定的模块加载到内核中。Linux有许多功能是通过模块的方式,在需要时才载入kernel。如此可使kernel较为精简,进而提高效率,以及保有较大的弹性。这类可载入的模块通常是设备驱动程序。
编写shell脚本的时候经常需要解压缩到指定的文件夹,tar命令是最常用的 参考一下说明,其中注意-C的用法。 tar命令 解压文件到指定目录:tar -zxvf /home/zjx/aa.tar.gz -C /home/zjx/pf tar [-cxtzjvfpPN] 文件与目录 .... 参数: -c :建立一个压缩文件的参数指令(create 的意思); -x :解开一个压缩文件的参数指令! -t :查看 tarfile 里面的文件! 特别注意,在参数的下达中, c/x/t 仅能存在一个!不
MBR的缺点主要在于他是个程序。引导程序和磁盘分区原本是不太相关的两个事情,但是MBR却用一种及其原始的方式把它们混合在了一起。此外,MBR程序本身也带来了不少麻烦。由于MBR运行在实模式,因此它的编写与引导过程的其它程序有诸多不同。而且由于MBR是直接写在引导扇区的,并不是以文件的形式存在,因此对MBR进行管理也十分麻烦。缺少程序校验也使黑客可以通过更改MBR,让病毒在操作系统引导前就完成载入。总而言之,MBR的设计真的太过时了。
今天有朋友买了新的台式机,硬盘容量4TB,安装windows7后只能看到2TB空间,救助。就该问题,涉及到分区表的MBR模式与GPT模式的区别,今天我们就来看一看。
不管是Windows还是Linux操作系统,底层设备一般均为物理硬件,操作系统启动之前会对硬件进行检测,然后硬盘引导启动操作系统,如下为操作系统启动相关的各个概念:
GPT分区工具:gdisk gdisk gdisk分区 GPT 128个主分区 [root@zutuanxue ~]# gdisk -l /dev/sdc [root@zutuanxue ~]# gdisk -l /dev/sdc 查看sdc信息 GPT fdisk (gdisk) version 1.0.3 Partition table scan: MBR: MBR only BSD: not present APM: not present GPT: not prese
在本教程中,我们将参考Linux dd命令的一个实际示例,系统管理员可以使用该命令将以MBR或GPT布局样式分区的较大HDD的Windows操作系统或Linux操作系统迁移到较小的SSD。 在本节摘录中,我们将使用安装在具有多个分区的硬盘上的Windows系统作为示例。 在HDD以MBR方案分区并且包含具有多个逻辑分区的扩展分区或分区无序的情况下,该方法可能变得相当复杂。 如果是这样,我建议你不要使用这种方法。 在这种情况下,使用ddrescure更安全,它可以克隆整个磁盘布局(分区表和每个分区内的已使用块),而不会实际传输空的空间。 可以通过从Ubuntu主存储库安装gddrescue包获得DDrescure。
硬盘的物理组成:由许许多多的圆形硬盘盘所组成。宜居硬盘盘能够容纳的数据量,而有所谓的单碟或者多碟。
了解一个系统的启动过程,对于一位系统管理员 and 运维是非常重要的。了解系统启动方式对于在系统出现故障时进行有效的故障排除非常重要。当系统启动并在几分钟后知道我们到了登录提示阶段。我们是否试图找出启动序列的所有阶段已经正常通过,以及系统启动期间这些场景背后发生了什么。下面我们就来熟悉一下Centos6系统的启动流程。
一、分区工具 分区工具:fdisk 和 parted ,其中大于2T请采取parted进行分区 yum install -y parted 二、MBR和GPT原理: 1、MBR原理: 主引导记录(MBR,Master Boot Record)是位于磁盘最前边的一段引导(Loader)代码。它负责磁盘操作系统(DOS)对磁盘进行读写时分区合法性的判别、分区引导信息的定位,它由磁盘操作系统(DOS)在对硬盘进行初始化时产生的。 通常,我们将包含MBR引导代码的扇区称为主引导扇区。因这一扇区中,引导代码占有
本篇文中重点为大家讲解一下CentOS 7 引导过程与服务管理,有需要的小伙伴可以参考一下。
磁盘分区表是一种存储在磁盘上的数据结构,用于存储关于磁盘分区的信息,包括分区的大小、位置和类型。MBR 和 GPT 是两种常见的磁盘分区表格式。GPT 格式较新,具有较多优势,包括:
Linux 系统迁移系统相对于 Windows 来说还是简单许多,使用 Linux 系统自带的 dd 命令即可。
接上一篇BIOS启动,BIOS完成了基础的硬件检测和硬件的中断向量表的初始化,然后BIOS找到MBR并且把MBR加载在内存中,跳转到该位置。加载的位置在内存中的0x7C00,至于为什么是这个位置,主要是因为历史的原因吧,最初的内存只有32K,历史选择了0x7C00(31k)。
声明:本文由【MS509 Team】成员expsky原创,仅用于技术交流分享,禁止将相关技术应用到不当途径。 整理电脑的时候找到自已以前分析的一个鬼影病毒的资料,当时兼容市面上主要的windows系统(XP, win7,包含x86和x64系统)样本来自国外,有不少亮点,当时花了不少时间把所有原理分析出来并重新用汇编和C++实现了出来。 以前的一些资料简单整理了下,分享出来,也给自己以前的工作留个记录。 该木马样本通过感染MBR达到早于系统得到执行。整个样本以非文件形式存在,直接写人磁盘扇区。包括感染的MBR
在日常运维工作中交付客户的云主机通常需要挂载超过2T的数据盘,对于超过2T的数据盘需要使用GPT分区表实现,然后老版本的fdisk 分区管理工具不支持GPT分区表需要使用Parted 分区管理工具。
今天给大侠带来FPGA Xilinx Zynq 系列第三十七篇,开启第二十四章,带来Linux 启动相关内容,本篇为本系列最后一篇,本篇内容目录简介如下:
很多人都喜欢在自己的电脑上装个双系统啥的,毕竟现在硬盘的成本是越来越低了,像明月这种老爷机都是双硬盘了,不多装个系统真心有点儿对不起它呀!前几天体验了一番 Linux Mint 19 后(可参考【Linux Mint 19 体验学习笔记】一文)感觉各种的不爽,特别是没有 QQ 和微信真心接受不了,没有想到这么多年过来了, Linux 桌面版依然还是这么的“鸡肋”,唉!
grub-install 命令有何用呢?其实就是把我们前面已经安装的软件包中的一些文件复制到 /boot/grub中;对于新安装GRUB软件包后,也是一个必经的过程;我们前面所说的GRUB软件包的安装;而现在我们说的是GRUB配置的过程中的安装;虽然在洋文中都是install ,但表达的意思是不一样的;
计算机开机是一个神秘的过程。我们只是按了开机键,就看到屏幕上的进度条或者一行行的输出,直到我们到达登录界面。然而,计算机开机又是个异常脆弱的过程,我们满心期望的登录界面可能并不会出现,而是一个命令行或者错误信息。了解计算机开机过程有助于我们修复开机可能出现的问题。
存储的选型、规划与管理等工作一直以来都是日常系统运维工作中的重点。MBR与GPT两种类型的分区表的选择与使用则是在磁盘管理中需要根据应用场景来注或考虑的要点。结合笔者多年的运维工作经验,引发了对这些问题的一些思考,借此文进行一些分享。
早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序。尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化。
在需要对一个4T的硬盘分区时,使用fdisk不能建立分区。原因是fdisk只能建立2TB大小的分区。如果大于2T需要采用GPT磁盘模式。下面介绍下MBR和GPT原理。
作者:bobyzhang,腾讯 IEG 运营开发工程师 0. 故事的开始 0.1 为什么和做什么 最近家里买了对音响,我需要一个数字播放器。一凡研究后我看上了 volumio(https://volumio.org/) 这是一个基于 Debian 二次开发的 HIFI 播放器系统,可以运行下 x86 和树莓派上。 我打算让 volumio 运行在我 2009 年购买的老爷机笔记本上,也让它发挥一点余温热。正常操作是将 volumio 的系统镜像刷到 U 盘上,连接电脑后使用 U 盘启动系统即可。但是家
操作系统的启动是个很令人好奇的话题,从按下计算机电源的那一刻,计算机从裸机开始呈现一个丰富的系统界面,这个从只有硬件逻辑到软件逻辑的过程是如何完成的?这里我们将从硬盘分区,三方协议,grub引导启动程序进行讲述,首先介绍硬盘MBR分区形式,然后介绍CPU,BIOS,系统的三方协议,讲述从CPU的硬件逻辑最终运行内核的软件逻辑的过程,最后介绍一下引导启动程序的发展,在grub这些引导启动程序中如何继续遵守三方协议。
今天帮新同事安系统的时候发现主板用的是GPT引导,但是他硬盘只有1t,系统分区的时候发现不能创建系统分区原因是硬盘是MBR而系统盘只能新建在GPT所以这里记录下安装系统过程中分区时将系统 MBR 引导转为 GPT
计算机开机是一个神秘的过程。我们只是按了开机键,就看到屏幕上的进度条或者一行行的输出,直到我们到达登录界面。然而,计算机开机又是个异常脆弱的过程,我们满心期望的登录界面可能并不会出现,而是一个命令行或者错误信息。了解计算机开机过程有助于我们修复开机可能出现的问题。 最初始阶段 当我们打开计算机电源,计算机会自动从主板的BIOS(Basic Input/Output System)读取其中所存储的程序。这一程序通常知道一些直接连接在主板上的硬件(硬盘,网络接口,键盘,串口,并口)。现在大部分的BIOS允许你从
Linux最传统的磁盘文件系统(filesystem)使用的是EXT4格式,所以要了解文件系统就得要由认识EXT4开始,而文件系统是创建在硬盘上面的,因此我们得了解硬盘的物理组成才行,下面我们回来详细谈一谈磁盘,inode,block还有superblock等文件系统,的理论知识.
一直以来,对于磁盘的分区以及Linux目录挂载的概念都不是很清晰,现在趁着春暖花开周末在家没事就研究了下它们,现在来分享我的理解。
Windows与Linux的双启动,一般使用Grub4Dos(以下简称Grub)来作双启动的工具。 自从使用Vista Loader来“软改”bios来激活Vista/Win7后,Grub的grldr就被占用了。虽然可以使用外置menus.lst来增加启动项,但这个grldr版本较旧,不支持ext3的启动,无法启动Linux。而且Vista Loader的grldr采用的是把重新编译的grldr切开两份,中间加上SLIC代码的方法制成,不能使用原装的grldr代替。 我一直在网上寻找通过grldr启动另一个grldr的例子,未果。只好保持Vista Loader的grldr不动,使用Vista/Win7的BootMgr来启动较新版本的原装grldr。 具体方法如下:
这里在实验之前需要下载 Bochs-win32-2.6.11 作者使用的是Linux版本的,在Linux写代码不太舒服,所以最好在Windows上做实验,下载好虚拟机以后还需要下载Nasm汇编器,以及GCC编译器,为了能够使用DD命令实现磁盘拷贝,这里你可以安装windows 10 下面的子系统Ubuntu,需要使用命令时可以直接切换。
之前网上无意间看到deepin这个国产pc操作系统,初见deepin时给人一种初恋般的怦然心动的感觉。正好这时家里有一台5年前的笔记本电脑,安装windows已经能感到明显的卡顿,所以我在笔记本上安装上了deepin。安装完后,界面颜值真是秒杀windows,而流畅度相比之前安装的windows7也有肉眼可见的提升。有人要问了,这个系统这么好,那你为啥还要装回windows了?说到这里就要说到国产操作系统的通病了:生态。由于一些工作软件在deepin上的匮乏,用wine安装windows程序体验不好,所以索性直接安装回windows了。
对于linux系统的初学者来说,理解并掌握linux系统启动流程能够使你够深入的理解linux系统,还可以通过系统的启动过程来分析问题解决问题。 Linux系统的启动流程 ---- 关于linux系统的启动流程可以分为以下步骤: POST(加电自检)–>加载BIOS(Basic Input/Outpu System)–>确定启动设备(Boot sequence)、加载Boot Loader–>加载内核(kernel)初始化initrd–>运行/sbin/init初始化系统–>打印用户登录
领取专属 10元无门槛券
手把手带您无忧上云