今天小编要跟大家分享的文章是关于Linux上错误段的核心转储问题。喜欢Linux操作系统,对Linux感兴趣的小伙伴快来看一看吧,希望通过本篇文章能够有所收获。
在案例中我使用c语言编写了一个简单的四层二叉树进行 GDB 调试练习。这个程序故意在后面引发了一个段错误,导致程序崩溃。文章将使用 GDB 来诊断这个问题。
finish:运行程序,知道当前函数完成返回,并打印函数返回时的堆栈地址和返回值及参数值等信息。
王竞原,负责网游刀锋铁骑项目,高级开发工程师,使用C++已有10年,非常喜欢C++,特别是C++11。希望能与广大的C++爱好者多交流。 一、什么是Android的C/C++ NativeCrash Android上的Crash可以分两种: 1、Java Crash java代码导致jvm退出,弹出“程序已经崩溃”的对话框,最终用户点击关闭后进程退出。 Logcat 会在“AndroidRuntime”tag下输出Java的调用栈。 2、Native Crash 通过NDK,使用C/C++开发,导致
使用gdb进行调试后,定位到错误。当程序执行 return 1 + my_strlen(p++)这条语句时,会出现以下的段错误情况。
使用 gdb 之前,要求对文件进行编译时增加 -g 参数,加了这个参数过后生成的编译文件会大一些,这是因为增加了 gdb 调试内容。
在进行C/C++相关开发时候,经常会遇到段错误,这个时候比较无语的一点就是Linux Shell终端下几乎不会输出太多有用的信息,大多数情况下打印信息如下:Segmentation fault (core dumped),错误如下图所示:
Windows无人参与安装在初始安装期间使用应答文件进行处理。您可以使用应答文件在安装过程中自动执行任务,例如配置桌面背景、设置本地审核、配置驱动器分区或设置本地管理员账户密码。应答文件是使用Windows系统映像管理器创建的,它是Windows评估和部署工具包(ADK:Assessment and Deployment Kit)的一部分,可以从以下站点免费下载https://www.microsoft.com.映像管理器将允许您保存unattended.xml文件,并允许您使用新的应答文件重新打包安装映像(用于安装Windows)。在渗透式测试期间,您可能会在网络文件共享或本地管理员工作站上遇到应答文件,这些文件可能有助于进一步利用环境。如果攻击者遇到这些文件,以及对生成映像的主机的本地管理员访问权限,则攻击者可以更新应答文件以在系统上创建新的本地账户或服务,并重新打包安装文件,以便将来使用映像时,新系统可以受到远程攻击。
Coredump 调试 Coredump是什么? Linux环境下,当程序异常退出(发生段错误)时,会产生一个core文件,该文件记录了程序运行时的内存,寄存器状态,堆栈指针,内存管理信息还有各种函数调用堆栈信息等,我们可以理解为是程序工作当前状态存储生成的一个文件,通过工具分析这个文件,我们可以定位到程序异常退出的时候对应的堆栈调用等信息,找出问题所在并进行及时解决。 ---- 前期设置 设置core文件生成的目录,其中%e表示程序文件名,%p表示进程ID,否则会在程序的当前目录生成dore文件。
检查核心转储文件是否被启用,其中core file size项应该不是0【0表示禁用】。如果是0,可以使用ulimit -c unlimited 来启用核心转储文件的生成。
SIGSEGV,也称为分段违规或分段错误,是基于 Unix 的操作系统(如 Linux)使用的信号。它表示程序尝试在其分配的内存之外进行写入或读取,由于编程错误、软件或硬件兼容性问题或恶意攻击(例如缓冲区溢出)。
JavaScript 引擎是一个单线程解析器,而单线程解析器由堆和单一调用栈组成。浏览器提供 Web APIs,比如:DOM,AJAX 和 定时器。
核心: 修复了错误#79329(一个空字节后get_headers()默默地被截断)(CVE-2020-7066) 修复了错误#79244(PHP在解析INI文件时崩溃)的问题。 修复了错误#63206(restore_error_handler无法还原以前的错误掩码)。 COM: 修复了错误#66322(COMPersistHelper :: SaveToFile可以保存到错误的位置)。 修复了错误#79242(COM错误常量与x86上的com_exception代码不匹配)。 修复了错误#79247(垃圾收集变体对象段错误)。 修复了错误#79248(遍历空的VT_ARRAY会引发com_exception)。 修复了错误#79299(com_print_typeinfo打印重复的变量)。 修复了错误#79332(永远不会释放php_istreams)。 修复了错误#79333(com_print_typeinfo()泄漏内存)。 CURL: 修复了错误#79019(复制的cURL处理上载空文件)。 修复了错误#79013(发布带有curl的curlFile时缺少Content-Length)。 DOM: 修复了错误#77569 :(在DomImplementation中写入访问冲突)。 修复了错误#79271(DOMDocumentType :: $ childNodes为NULL)。 Enchant: 修复了错误#79311(在大端架构下,enchant_dict_suggest()失败)。 EXIF: 修复了错误#79282(在exif中使用未初始化的值)(CVE-2020-7064)。 Fileinfo: 修复了错误#79283(libmagic补丁中的Segfault包含缓冲区溢出)。 FPM: 修复了错误#77653(显示运行者而不是实际的错误消息)。 修复了错误#79014(PHP-FPM和主要脚本未知)。 MBstring: 修复了错误#79371(mb_strtolower(UTF-32LE):php_unicode_tolower_full处的堆栈缓冲区溢出)(CVE-2020-7065)。 MySQLi: 修复了错误#64032(mysqli报告了不同的client_version)。 MySQLnd: 已实现FR#79275(在Windows上支持auth_plugin_caching_sha2_password)。 Opcache: 修复了错误#79252(预加载会导致php-fpm在退出过程中出现段错误)。 PCRE: 修复了错误#79188(preg_replace / preg_replace_callback和unicode中的内存损坏)。 修复了错误#79241(preg_match()上的分段错误)。 修复了错误#79257(重复的命名组(?J),即使不匹配,也更倾向于最后一种选择)。 PDO_ODBC: 修复了错误#79038(PDOStatement :: nextRowset()泄漏列值)。 反射: 修复了错误#79062(具有Heredoc默认值的属性对于getDocComment返回false)。 SQLite3: 修复了bug#79294(:: columnType()在SQLite3Stmt :: reset()之后可能失败。 标准: 修复了错误#79254(没有参数的getenv()未显示更改)。 修复了错误#79265(将fopen用于http请求时,主机标头注入不当)。 压缩: 修复了错误#79315(ZipArchive :: addFile不支持开始/长度参数)。
Backtrace中,一般都只有一些地址。但是利用addr2line这个工具,就可以找到对应的代码行。前提条件是可执行程序或者动态链接库编译的时候带-g选项。
补充说明: ulimit为shell内建指令,可用来控制shell执行程序的资源。
一般来说,项目开发过程中,代码编写占开发总时间的40%,剩下的时间基本就是自测和联调的过程。程序出错很正常,关键是如何迅速的去定位它,修掉它。本文将介绍自己程序调试的一些常用方法,这边我以golang为例,总结为望问切闻---debug四部曲。
core dump又叫核心转储, 当程序运行过程中发生异常, 程序异常退出时, 由操作系统把程序当前的内存状况存储在一个core文件中, 叫core dump. (linux中如果内存越界会收到SIGSEGV信号,然后就会core dump)
在Linux系统中,程序运行时可能会遇到段错误(Segmentation Fault),这是一种常见的运行时错误,通常由于程序试图访问其内存空间中未分配(或不允许)的部分时发生。
约定:对gdb的命令,如果有缩写形式,会在第一次出现的时候小括号内给出缩写,比如运行命令写成run(r);本文中尖括号< >用来表达一类实体,比如<program>表示这个地方可以放置程序;中括号[]表示括号中的内容是可写可不写,比如[=<value>],表示“=<value>”可以有也可以没有(<value>本身又是一类实体);“|”表示或的关系。
虽然 Bash 十分好用,但在编写脚本的时候,大家通常会选择一种更方便的编程语言,例如 JavaScript 就是一个很完美的方案。不过标准的 Node.js 库在使用之前需要许多额外的操作,比如安装、导入库等,zx 为child_process提供了封装器,用于转义参数并提供切合实际的默认值。
C 缓冲区溢出背后的基本思想非常简单。您有一个缓冲区,这是一块保留用于存储数据的内存。在堆栈的外部(在 x86 和 x86_64 上向下增长,这意味着随着内存地址变大,内存地址会下降),程序的其他部分被存储和操作。通常,我们进行黑客攻击的想法是按照我们认为合适的方式重定向程序流。对我们来说幸运的是,对堆栈的操作(堆栈“粉碎”)可以让我们做到这一点。通常,您会希望获得特权,通常是通过执行 shellcode - 或者无论您的最终目标是什么,但出于本教程的目的,我们只会将程序流重定向到我们无法访问的代码(在实践,这几乎可以是任何事情;甚至包括执行未正式存在的指令)。这是通过写入越过缓冲区的末尾并任意覆盖堆栈来完成的。
方法一:最简单办法,看打印,通过反复调试,看是哪条语句造成造成了死机。这种方法效率低,而且有时不准确,比如一个系统中有多个进程,但A进程跑的B断点是,出现段错误,系统发出11号信号,造成B,C等进程接到11号信号反初始化而推出。实际当中可能不一定是A进程原因,因为此时B,C等进程也在并发执行,甚至A,B,c 三个进程都在访问某一共享资源(如共享内存等)。
当容器终止时,容器引擎使用退出码来报告容器终止的原因。如果您是 Kubernetes 用户,容器故障是 pod 异常最常见的原因之一,了解容器退出码可以帮助您在排查时找到 pod 故障的根本原因。
在Linux环境下执行程序的时候,有的时候会出现段错误(‘segment fault’),同时显示core dumped,就像下面这样:
在高执行级别下,代码可以执行特权指令,访问任意的物理地址,这种CPU执行级别就对应着内核态。
写在前面:今天开始尝试写写除Vim外的其他内容,仍然是以技术为主,可能涉及的内容包括Linux、正则表达式、gdb、makefile等内容,不知道小伙伴们有没有兴趣看呢?不管如何,也算是我自己的知识沉淀吧~
LLVM 提供了一系列的工具帮助 C/C++/Objc/Objc++ 开发者检查代码中可能的潜在问题,这些工具包括 Address Sanitizer,Memory Sanitizer,Thread Sanitizer,XRay 等等, 功能各异。
有什么好的办法可以在 C/C++ 程序段错误退出时输出堆栈信息,来方便查找错误么?
目前release的最新版本为8.0,GDB可以运行在Linux 和Windows 操作系统上。
呵,段错误?自从我看了这篇文章,我还会怕你个小小段错误? 请打开你的Linux终端,跟紧咯,准备发车!!嘟嘟嘟哒~~
core dump 可以理解为当程序崩溃时,自动将内存信息保存到文件中。这里的 core 就是 memory,dump 就是将内存数据保存到磁盘的过程。
近日,Linux底层函数glibc 的 DNS 客户端解析器被发现存在基于栈的缓冲区溢出漏洞。攻击者可借助特制的域名、 DNS 服务器或中间人攻击利用该漏洞执行任意代码,甚至控制整个系统。
对于Linux程序员来说,我们都知道一个事实:程序不能写只读数据,一旦去写就会发生段错误。但是可能大多数人并不清楚为什么会发生段错误,那么本篇文章就来说说:从只读数据被映射到进程的虚拟地址空间到写访问发生段错误的整个过程,力求让大家搞清楚这里面的底层内核原理,讲完整个过程之后我们来通过一个示例代码让修改只读数据变得合法,那么我们现在开始吧!
“分段错误可能难以追踪。由于通常没有明确的错误消息,因此可能需要反复试验才能找出问题所在。我试了好久(•́へ•́╬)!大致总结了一下,给大家参考,如果还有其他情况,欢迎大家补充。”
用root权限的Terminal(或一般权限的Terminal)的vi编辑器编写一个C程序a.c:
EasyCVR是我们支持协议最全面的视频平台,它能支持主流协议包括国标GB/T28181、RTMP、RTSP/Onvif等,以及厂家的私有协议,如海康Ehome、海康SDK、大华SDK等。平台可提供视频监控直播、云端录像、云存储、录像检索与回看、智能告警、平台级联、智能分析等视频服务,在线下场景中有着广泛的应用。
随着React16的发布越来越接近,我们想宣布一些关于在组件内如何处理JavaScript错误的变化。这些变化包括在React16 Beta版本,并将会成为React16的一部分。
首先,栈 (stack) 是一种串列形式的 数据结构。这种数据结构的特点是 后入先出 (LIFO, Last In First Out),数据只能在串列的一端 (称为:栈顶 top) 进行 推入 (push) 和 弹出 (pop) 操作。根据栈的特点,很容易的想到可以利用数组,来实现这种数据结构。但是本文要讨论的并不是软件层面的栈,而是硬件层面的栈。
你可能在 JavaScript 项目中用了console.log。这是一种查看变量值或程序运行中发生的事情的便捷方法。但是 JavaScript console 对象还有许多其他的功能,可以在处理项目时提供帮助。本文将会介绍一些我的最爱,希望你在工作时记得使用它们!
《CSAPP》是指计算机系统基础课程的经典教材《Computer Systems: A Programmer's Perspective》,由Randal E. Bryant和David R. O'Hallaron编写。该书的主要目标是帮助深入理解计算机系统的工作原理,包括硬件和软件的相互关系,其涵盖了计算机体系结构、汇编语言、操作系统、计算机网络等主题,旨在培养学生系统级编程和分析的能力。
当各位读者看到本次文章的标题,你可能会比较熟悉堆、栈的用法,因为在你学完了c语言后,或多或少都会接触到一点数据结构(但是这里要讲的与数据结构里面的堆和栈还是有点差别的,本次分析这个是从内存分配的角度去看,不是从的数据结构特点去看,而且在笔试面试的时候,经常会遇到这种题目,让你说出他们的区别来。自己亲身体会,遇到了好几次)。后面的数据段、代码段、bss段,可能你平时没有怎么细心总结,现在你可能还真讲不出他们的区别来,不信的话,读者在看到这里可以先暂定一下,在自己以往写了那么多的代码,仔细回忆看看他们有啥区别,如果不知道也没关系,读者可以继续随着我笔步往下看,当你看完或许会发出这样的感叹,原来是这样啊。是的,确实是这样的,包括自身在写这篇文章开始之前,我也讲不出来他们的区别(这里是昨天一个网友在我自己建的一个技术交流群里。提出了一个关于数据初始化的问题,如下图,正如你所见这个可能比较简单,但是要理解这里面的知识点,还是要花点时间来总结一下的):
在使用C或C++编写程序时,有时会遇到一些运行时错误,其中一种常见的错误是Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0。这个错误提示意味着程序引发了一个严重的信号(Signal),导致程序崩溃。SIGSEGV是段错误(Segmentation Fault)的信号,它通常发生在访问无效的内存地址时。
小即是美。事物发展都有个过程,由简入繁,不能一开始就想得太复杂,Multics, IBM的OS/360都是因此而失败。
该文介绍了Linux系统编程中进程地址空间的基本概念和详细说明。包括分段机制、虚拟地址、分页机制、环境变量、命令行参数、栈、共享库和mmap内存映射区等。
领取专属 10元无门槛券
手把手带您无忧上云