01 概念介绍 CUDA(Compute Unified Device Architecture 统一计算设备架构) CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务。 使用CUDA的好处就是透明。根据摩尔定律GPU的晶体管数量不断增多,硬件结构必然是不断的在发展变化,没有必要每次都为不同的硬件结构重新编码,而CUDA就是提供了一
到https://developer.nvidia.com/cuda-gpus查询GPU支持的CUDA版本:
前言: 对于深度学习来说,各种框架torch,caffe,keras,mxnet,tensorflow,pandapanda环境要求各一,如果我们在一台服务器上部署了较多的这样的框架,那么各种莫名的冲突 会一直伴随着你,吃过很多次亏之后,慢慢的接触了Anaconda,真的是很爽的一个功能,来管理环境配置。我们进行tensorflow安装的时候,还是使用Anaconda,鉴于国内墙太高 ,我们使用了Tsinghua的镜像文件,清华大学的Anaconda介绍地址见:https://mirror.tun
Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free access to computing resources, including GPUs and TPUs. Colab is especially well suited to machine learning, data science, and education.
Ubuntu 下安装CUDA需要装NVIDIA驱动,首先进入NVIDIA官网,然后查询对应NVIDIA驱动是否支持你电脑的型号。
1.cat /usr/local/cuda/version.json 2.或者 nvcc -V(注意是大写 ) 3 nvidia-smi
配置深度学习主机与环境(TensorFlow+1080Ti): 01 概念介绍 Anaconda Anaconda(https://www.continuum.io/why-anaconda)是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的
6 月 6 日,QQ For Linux 3.2.9 正式支持了音视频通话功能,这是 QQ Linux 版本的又一个里程碑事件。 2024 年,QQ 音视频正式推出 NTRTC,全平台(iOS/Android/MacOS/Windows/Linux)的支持是 NTRTC 的重要特性之一,本次 Linux 平台的适配也是这次升级过程中重要的一环。 本文作者详细记录了 QQ 音视频通话在 Linux 平台适配开发过程中的技术实现方案与一些细节,以帮助大家理解在 Linux 平台实现音视频通话能力的从 0 到 1 的过程。也欢迎大家下载最新版 Linux QQ 试用体验:im.qq.com/linuxqq
Python在气象与海洋领域的应用愈发广泛,特别是其拥有众多的第三方库避免了重复造轮子,使得开发速度较快。但是官方提供的Python仅包含了核心的模块和库,为了完成其他任务,所需的第三方模块和库需要另行安装,这个过程往往较为繁琐。
CentOS(Community Enterprise Operating System)是Linux发行版之一,它由来自于Red Hat Enterprise Linux(RHEL)依照开放源代码规定发布的源代码所编译而成。由于出自同样的源代码,因此有些要求高度稳定性的服务器以CentOS替代商业版的Red Hat Enterprise Linux使用[1]。自从红帽公司单方面宣布终止CentOS的开发后,我们腾讯云的用户也逐步开始将应用迁移到其它操作系统上。由于CentOS 7的维护终止日期在2024年6月30日,距离当前还有一段时间,所以还有少量客户在继续使用着该版本。
2017年1月18日,facebook下的torch7团队宣布Pytorch开源,官网地址:pytorch。2018.4月 ,PyTorch0.4.0已经有官方的Windows支持,
2024年6月6日,QQ For Linux 3.2.9 正式支持了音视频通话功能,这是 QQ Linux 版本的又一个里程碑事件。 2024 年,QQ 音视频正式推出 NTRTC,全平台(iOS/Android/MacOS/Windows/Linux)的支持是 NTRTC 的重要特性之一,本次 Linux 平台的适配也是这次升级过程中重要的一环。
Ubuntu安装Caffe出现无法登陆图形界面或者循环登陆(Loop Login)问题,一般都是由于显卡驱动或者Cuda低版本的一些不兼容问题。
众所周知Python常用的版本有2.x和3.x,常常会引起版本问题。由于我在Linux系统中已经安装有Python3.x和对应的TensorFlow,现在遇到需要跑在Python2.x下的TensorFlow工程时,就很麻烦,因此可以用Anaconda来建立一个独立的小环境来另外安装Python2.x及其对应的TensorFlow来跑这个工程。
Anaconda是一个用于科学计算的Python发行版,支持Linux、Mac和Window系统,提供了包管理与环境管理的功能,可以很方便地解决Python并存、切换,以及各种第三方包安装的问题。
我们日常使用的各种 APP 中的许多功能,都离不开相似度检索技术。比如一个接一个的新闻和视频推荐、各种常见的对话机器人、保护我们日常账号安全的风控系统、能够用哼唱来找到歌曲的听歌识曲,甚至就连外卖配送的最佳路线选择也都有着它的身影。
Pi-hole 是一个通过自己的 Linux 硬件实现网络广告拦截的 DNS 陷阱,无需安装任何客户端软件即可保护设备免受不需要的内容干扰。
参考很多文章,以这篇为主:http://www.linuxidc.com/Linux/2016-11/136768.htm
本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6。 Python 3.6 首先安装 Python 3.6,这里使用 Anaconda 3 来安装,下载地址:https://www.anaconda.com/download/#linux,点击 Download 按钮下载即可,这里下载的是 Anaconda 3-5.1 版本,如果下载速度过慢可以选择使用清华
接前文,在安装好Ubuntu 18.04双系统和解决了Windows与Ubuntu的时间同步问题后。正式进入正题了:构建GPU可使用的Kaggle Docker镜像(NVIDIA Only)。为了分享总结经验,同时也方便自己以后有使用需求,现简单总结下构建过程。
英特尔开放式图像降噪是一个开源库,其中包含高性能、高质量的去噪滤波器,适用于使用光线追踪渲染的图像。
【注】并不是所有 Linux 发行版都自带 lsb_release 命令,如果系统上没有该命令需要手动安装 lsb-release 工具。
在本教程中,我们将为您提供在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)的详细步骤。我们将使用清华大学开源软件镜像站作为软件源以加快下载速度。通过按照以下教程,您将轻松完成GPU版本PyTorch的安装,为深度学习任务做好准备。
本教程将为您提供在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)的详细步骤。我们将使用清华大学开源软件镜像站作为软件源以加快下载速度。在今天的学习中,您将学会如何在不同操作系统上轻松安装和配置深度学习框架PyTorch,为您的AI项目做好准备。
但在开始之前,先来看看一个最简单的使用 TensorFlow Python API 的示例代码,这样你就会对我们接下来要做的事情有所了解。
本文简要介绍Docker,记录Docker常用命令使用方法。 Docker 简介 **Docker 属于 Linux 容器的一种封装,提供简单易用的容器使用接口。**Docker 将应用程序与该程序的依赖,打包在一个文件里面。运行这个文件,就会生成一个虚拟容器。程序在这个虚拟容器里运行,就好像在真实的物理机上运行一样。有了 Docker,就不用担心环境问题。 Docker 使用流程 安装docker 创建Image 从Image创建Container 在Container中工作 将在Contai
图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。 用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要,同时也在深度学习领域广泛应用。
https://developer.nvidia.com/cuda-downloads
用过一段时间的caffe后,对caffe有两点感受:1、速度确实快; 2、 太不灵活了。
偶尔会听到有嵌入式 Linux 玩家抱怨自己的开发板:图形界面不够流畅,拖动窗口有卡顿感。
最近在github上发现一个很好的项目: https://github.com/csunny/DB-GPT
本文介绍了如何在 Ubuntu 14.04 下安装 TensorFlow,包括使用 Anaconda、使用 pip 以及在 Mac 系统中安装的方法。通过这些方法,你可以创建一个具有 TensorFlow 的环境并快速运行一个手写数字识别的示例。
禁用BIOS的secure boot,即disable它,如果不关闭,使用第三方源安装显卡驱动会安装后不能使用。
最近导师安排了一个论文模型复现的工作,奈何硬件条件不够,只能到处搜罗免费的GPU资源,过上了白嫖百家GPU资源的日子,这时候刚好遇见了腾讯的GPU云服务器体验活动,可谓是久旱逢甘霖。作为一名零基础小白,现将自己使用GPU云服务器(以Windows系统为例)搭建自己的深度学习环境的过程记录下来,方便大家参考。
5、内核源码(网络)阅读:tcp_input.c tcp_out.c tcp_ipv4.c tcp.c
默认情况下,用户在 TKE 添加 GPU 节点时,会自动预装特定版本 GPU 驱动,但是目前默认安装 GPU 驱动版本是固定的,用户还不能选择要安装的 GPU 驱动版本,当用户有其他版本的 GPU 驱动使用需求时,就需要在节点上重新安装,下面将介绍在 TKE 节点中如何重新安装 GPU 驱动程序。
1).run形式安装cuda。清理原有显卡驱动后,先安装自己显卡对应的驱动,在步骤中出现”Would you like to run the nvidia-xconfig utility to automatically update your X configuration file…”时,选择 No。(这里是cuda自带的旧版本的驱动)。
TensorFlow简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。 TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在
什么是TensorFlow? TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU)、服务器、移动设备等等。TensorFlow 最初由Google Brain 小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深
Protocol Buffer是谷歌开发的处理结构化数据的工具,类似于XML和JSON这两种比较常用的结构化数据处理工具。但是Protocal Buffer格式的数据和XML或者JSON又有很大的区别:首先,使用Protocol Buffer时需要先定义数据格式schema(Protocol Buffer的具体编码方式),其序列化后得到的数据不是可读字符串,而是二进制流;其次,Protocol Buffer格式的数据不需要任何其他信息就能还原序列化之后的数据。Protcol Buffer序列化出来的数据要比XML格式的数据笑3到10倍,解析时间要快20到100倍。
在rc0,rc1,rc2排队出场之后,TensorFlow 1.11.0的正式版上线了。
近日,英伟达(NVIDIA)宣布,将 Linux GPU 内核模块作为开放源代码发布。早在几天前,NVIDIA 开始在 GitHub 上陆续公开相关代码,目前该项目已经收获 7.7k star,众多网友对本次开源纷纷表示难以置信。
1. 写在前面 搞算法的同学也都明白,一个比较完美的python环境是多么的重要。这篇文章打算把一些必备的python环境配置过程记录下来,这样不管是新到了公司实习或者就职,还是新换了电脑,都可以借鉴这篇快速把环境搭建起来啦 😉 由于我也是重装了系统,所以算是从0开始搭建python环境,这次从anaconda安装开始, 然后到cuda的相关安装配置,再到cudnn的安装配置,然后从anaconda中建立虚拟tensorflow和pytorch的虚拟环境,再各自的虚拟环境里面安装jupyter noteb
PaddleNLP Pipelines 是一个端到端智能文本产线框架,面向 NLP 全场景为用户提供低门槛构建强大产品级系统的能力。本项目将通过一种简单高效的方式搭建一套语义检索系统,使用自然语言文本通过语义进行智能文档查询,而不是关键字匹配。
(1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。
本周我们在社区问答中精选出开发者在使用Linux安装时遇到的技术难题,可以到PaddlePaddle公众号【常见问答】专栏上寻求解决方案,更好的帮助新用户在安装过程中答疑解惑。
在前面的一篇文章中介绍了Intel、AMD、NIVIDA三个厂家的GPU虚拟化技术,有兴趣的可以看看本号之前的文章,今天就具体的实践一下英伟达的vGPU。
领取专属 10元无门槛券
手把手带您无忧上云