严格来说,Linux 不是实时操作系统,但 Linux 却支持实时调度算法。与通用调度算法(如完全公平调度算法)相比,实时调度算法更注重任务(进程)的实时性。为什么 Linux 支持实时调度算法,却不是实时操作系统呢?有兴趣的同学可以去网上查阅相关的文献或者资料。
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过caspar at linux.alibaba.com或者 tao.ma at linux.alibaba.com反馈。
实时系统是这样的一种计算系统:当事件发生后,它必须在确定的时间范围内做出响应。在实时系统中,产生正确的结果不仅依赖于系统正确的逻辑动作,而且依赖于逻辑动作的时序。换句话说,当系统收到某个请求,会做出相应的动作以响应该请求,想要保证正确地响应该请求,一方面逻辑结果要正确,更重要的是需要在最后期限(deadline)内作出响应。如果系统未能在最后期限内进行响应,那么该系统就会产生错误或者缺陷。在多任务操作系统中(如Linux),实时调度器(realtime scheduler)负责协调实时任务对CPU的访问,以确保系统中的所有的实时任务在其deadline内完成。
CFS 调度器 ( Completely Fair Scheduler ) 是 " 完全公平调度器 " , " 完全公平调度算法 " 对每个 进程 都是 公平 的 ,
人生不是书上的故事,喜怒哀乐,悲欢离合,都在书页间,可书页翻篇何其易,人心修补何其难。——烽火戏诸侯《剑来》
调度:就是按照某种调度的算法设计,从进程的就绪队列中选择进程分配CPU,主要是协调进程对CPU等相关资源的使用。
实时优先级范围是0到MAX_RT_PRIO-1(即99),而普通进程的静态优先级范围是从MAX_RT_PRIO到MAX_PRIO-1(即100到139)。值越大静态优先级越低。
调度器面对的情形就是这样, 其任务是在程序之间共享CPU时间, 创造并行执行的错觉, 该任务分为两个不同的部分, 其中一个涉及调度策略, 另外一个涉及上下文切换.
调度器类型 , 定义在 Linux 内核源码 linux-5.6.18\kernel\sched\sched.h 头文件中的
在前面的几篇文章中,我们重点分析了如果通过fork, vfork, pthread_create去创建一个进程或者线程,以及后面说了在内核层面do_fork的实现。目前为止我们已经了解到一个进程是如何创建的。
题目可以翻译为“硬实时环境下多程序的调度算法”,发表于1973年,引用情况如下图,文章推导了很多针对硬实时调度算法的定理,如最优静态调度算法RM、RM调度算法最小资源使用率上界……这些定理堪称实时调度算法的经典。由于当时还没有多核多处理器的概念,所以文章推导的公式都是针对单处理器的。
进程优先级起作用的方式从发明以来基本没有什么变化,无论是只有一个cpu的时代,还是多核cpu时代,都是通过控制进程占用cpu时间的长短来实现的。就是说在同一个调度周期中,优先级高的进程占用的时间长些,而优先级低的进程占用的短些。
实时进程和分时进程的调度算法不同,分别在rt.c和fair.c中实现。实时进程的优先级总是高于普通进程。
提示:公众号展示代码会自动折行,建议横屏阅读 摘要 本文(有码慎入)主要介绍Linux任务调度相关的发展历史和基本原理。多年以来,内核界的黑客们一直着力于寻找既能满足高负载后台任务资源充分利用,又能满足桌面系统良好交互性的调度方法,尽管截至到目前为止仍然没有一个完美的解决方案。本文希望通过介绍调度算法的发展历程,因为任务调度本身不是一个局限于操作系统的话题,包括数据库,程序语言实现等,都会与调度相关。本文在介绍过程中,会引用Linux的代码实现作为说明,同时阐述其中的一些趣闻轶事。 调度实体 进程任务通常包
Linux Kernel Development 一书中,关于 Linux 的进程调度器并没有讲解的很全面,只是提到了 CFS 调度器的基本思想和一些实现细节;并没有 Linux 早期的调度器介绍,以及最近这些年新增的在内核源码树外维护的调度器思想。所以在经过一番搜寻后,看到了这篇论文 A complete guide to Linux process scheduling,对 Linux 的调度器历史进行了回顾,并且相对细致地讲解了 CFS 调度器。整体来说,虽然比较啰嗦,但是对于想要知道更多细节的我来说非常适合,所以就有了翻译它的冲动。当然,在学习过程也参考了其它论文。下面开启学习之旅吧,如有任何问题,欢迎指正~
该文章介绍了Linux 系统中进程的调度、进程的优先级以及实时进程的调度策略。首先介绍了Linux 系统中的进程调度,包括不同的调度类型、调度算法和调度优先级。其次,讨论了Linux 系统中的实时进程调度,包括实时进程的定义、调度特性和实时进程的调度算法。最后,介绍了Linux 系统中进程调度的实现,包括内核中的进程管理、进程的地址空间、进程的调度和同步以及进程的内存管理。
因而内核提供了两个调度器主调度器,周期性调度器,分别实现如上工作, 两者合在一起就组成了核心调度器(core scheduler), 也叫通用调度器(generic scheduler).
在上一篇文章中介绍了 Linux 内核是如何对进程进行管理的,这篇将阐述内核是如何对进程进行调度。因为这篇文章努力用简单的语言把进程调度这件事情描述清楚,所以文章篇幅略长,建议收藏慢看。也欢迎关注公众号 CS 实验室 ,目前在写一些开发中常用但不常了解细节的东西,比如 Linux 内核、Python 进阶。
发生进程切换时,本质是CPU资源占用者间的切换。此时需要保存当前进程在PCB中的执行上下文(CPU状态),然后恢复下一个进程的执行上下文。
长按识别上方二维码,关注公众号:后端面试那些事 回复“报告”,获取你的GitHub年度报告! 来源 | GitChat / DS 作为程序员,今天你决定翘掉晚上的加班,约女朋友看电影。 电影是 20:00 开始。 虽然翘掉了加班,但你从公司出来,就已经 19:00 了。 公司在望京 SOHO,约会地点在朝阳大悦城。 (这点时间,祝你好运吧) 也许你运气真的很好,19:50 就赶到商场了。 心里想:“还有10分钟才开始,电影院在 F8,乘个直梯,两分钟就到,今天真美好。” 你按了上行按钮,并行的 3 部电梯,
在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机的调度问题便成为操作系统设计的中心问题之一。
进程调度决定了将哪个进程进行执行,以及执行的时间。操作系统进行合理的进程调度,使得资源得到最大化的利用。
进程定义:所谓进程是由正文段(Text)、用户数据段(User Segment)以及系统数据段(System Segment)共同组成的一个执行环境。它代表程序的执行过程,是一个动态的实体。
进程可以分为实时进程和普通进程,对于这两种不同类型的进程肯定有不同的调度策略,task_struct中的policy就用来表示调度策略。
一、 I/O调度程序的总结 1) 当向设备写入数据块或是从设备读出数据块时,请求都被安置在一个队列中等待完成. 2) 每个块设备都有它自己的队列. 3) I/O调度程序负责维护这些队列的顺序,以更有效地利用介质.I/O调度程序将无序的I/O操作变为有序的I/O操作. 4) 内核必须首先确定队列中一共有多少个请求,然后才开始进行调度. 二、I/O调度的4种算法 1) CFQ(Completely Fair Queuing, 完全公平排队) 特点: 在最新的内核版本和发行版中,都选择CFQ做为默认的I/O调度器
先来先服务(FCFS-First Come First Serve)算法,是一种随即服务算法,它不仅仅没有对寻找楼层进行优化,也没有实时性的特征,它是一种最简单的电梯调度算法。它根据乘客请求乘坐电梯的先后次序进行调度。此算法的优点是公平、简单,且每个乘客的请求都能依次地得到处理,不会出现某一乘客的请求长期得不到满足的情况。这种方法在载荷较轻松的环境下,性能尚可接受,但是在载荷较大的情况下,这种算法的性能就会严重下降,甚至恶化。人们之所以研究这种在载荷较大的情况下几乎不可用的算法,有两个原因:
Linux是一个支持多任务的操作系统,而多个任务之间的切换是通过 调度器 来完成,调度器 使用不同的调度算法会有不同的效果。
先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
对于多处理器调度,此处概述了多个处理器可能带来的问题和设计上的一些问题;对于实时调度,概述了两种调度方法:限时调度和速率单调调度。
调度是分层次的,在操作系统中,一般将调度分为高级调度、中级调度和低级调度。 高级调度也称作业调度,其主要任务是按一定的原则,对磁盘中的处于后备状态的作业进行选择并创建为进程。 中级调度的主要任务是按照给定的原则和策略,将处在磁盘对换区中切具备运行条件的就绪进程调入内存,或将处于内存就绪状态或内存阻塞状态的进程交换到对换区。
在早期的 linux 操作系统中,2.4 版本到 2.6 版本之间,linux 采用了实现起来十分简单的 O(n) 调度器。
但说起电梯调度算法,我觉得还是可以给大家科普一下,好为大家在等电梯之余,打发时间而做出一点贡献。(电梯调度算法可以参考各种硬盘换道算法,下面内容整理自网络)
在前面的文章《Linux进程是如何创建出来的?》 和 《聊聊Linux中线程和进程的联系与区别》 中我们都讲过了,进程和线程在创建出来后会加入运行队列里面等待被调度。
通用块层是Linux中的一个重要组件,用于管理不同块设备的统一接口,减少不同块设备的差异带来的影响。它位于文件系统和磁盘驱动之间,类似于Java中的适配器模式,让我们无需关注底层实现,只需提供固定接口即可。
总体而言,Linux操作系统是一个强大、灵活且可定制的操作系统,广泛应用于服务器、嵌入式系统、超级计算机等各种领域。
每个CPU都有一个运行队列,每个运行队列中有三个调度队列,task作为调度实体加入到各自的调度队列中。
之所以叫做完全公平,是因为操作系统以每个线程占用 CPU 的比率来进行动态的计算,操作系统希望每一个进程都能够平均的使用 CPU 这个资源,雨露均沾。
我们一些常见的网络应用基本上都是基于 TCP 和 UDP 的,这两个协议又会使用网络层的 IP 协议。但是我们完全可以绕过传输层的 TCP 和 UDP,直接使用 IP,比如
前面我们重点分析了如何通过 fork, vfork, pthread_create 去创建一个进程或者线程,以及后面说了它们共同调用 do_fork 的实现。现在已经知道一个进程是如何创建的,但是进程何时被执行,需要调度器来选择。所以这一节我们介绍下进程调度和进程切换的详情。
群集技术就是共同为客户机提供网络资源的一组计算机系统,其中每一台提供服务的计算机,称之为节点。将多台计算机组织起来协同工作模拟一台性能更强大的计算机解决问题。
CPU 在计算机系统中是非常重要的,但是早期的时候非常简单,是因为它像其他资源一样被一个作业所独占,不存在什么处理及分配或者调度的问题,但是随着各种多道程序的设计以及不同类型的操作系统的出现,不同的CPU的管理方法将会为用户提供不同性能的操作系统
方式一:A 项目做着做着,发现里面有一条指令 sleep,也就是要休息一下,或者在等待某个 I/O 事件。那没办法了,就要主动让出 CPU,然后可以开始做 B 项目。
本文主要介绍了Linux服务器集群系统–LVS(linux Virtual Server),并简单描述下LVS集群的基本应用的体系结构以及LVS的三种IP负载均衡模型(VS/NAT、VS/DR和VS/TUN)的工作原理,以及它们的优缺点和LVS集群的IP负载均衡软件IPVS在内核中实现的各种连接调度算法。 参考文献 http://www.linuxvirtualserver.org/zh/index.html
从0~99的范围专供实时进程使用, nice的值[-20,19]则映射到范围100~139
领取专属 10元无门槛券
手把手带您无忧上云