首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

文本模糊匹配

文本模糊匹配主要是指对两段文本含义相近程度的计算,当我们需要处理的数据集比较多样或者是未标准化的脏数据时,通过模糊匹配主要实现的是去除重复值的操作。...高级的模糊匹配涉及到的是自然语言处理的一部分内容,这里所说的模糊匹配则是一种相对比较简单的匹配方式,例如两个相近的表达方式(‘underground’ ‘subway’),一些可能出现的拼写错误和较小的语法错误或句法偏移...返回两个字符串的差异主要是一些拼写错误导致的可能(返回值为1-100) fuzz.partial_ratio(str1,str2):返回两个字符串表达相同含义可能(返回值1-100),这种方法会对子字符串进行一个匹配...,也可以对一些意思相近的词语进行一个更好的识别 token_sort_ratio:匹配时不考虑单词顺序 process :有限选项中部分数据杂乱的匹配效果比较好 实际应用过程中选用哪种方法需要视情况而定...,对于一些表述上有微小差别意思却有巨大差别的数据(‘does’,‘doesn’t’),使用第一种方法进行匹配会得到相对比较低的得分,这也是我们需要注意的。

2.2K20

文本匹配——【NAACL 2022】GPL

论文地址:https://arxiv.org/abs/2112.07577 《文本匹配——【EMNLP 2021】TSDAE》中的自适应预训练的一大缺点是计算开销高,因为必须首先在语料库上运行预训练,然后在标记的训练数据集上进行监督学习...GPL 分三个阶段工作: query 生成:对于我们域中的给定文本,我们首先使用 T5 模型为给定文本生成可能的query。...我们使用密集检索进行这种挖掘,即我们使用现有的文本嵌入模型之一并检索给定query 的相关passage。...: 伪标记步骤非常重要,与之前的方法 QGen(《文本匹配——【NeurIPS 2021】BEIR》) 相比,它提高了性能,QGen 将 passages 视为正(1)或负(0)。...使用 MarginMSELoss 和Cross-Encoder,我们可以识别这些 passages 并教导文本嵌入模型这些段落也与给定查询相关。

73630
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人岗智能匹配,基于记忆的深度文本匹配技术

    针对互联网求职招聘场景的人岗匹配推荐问题,本文提出了一种建模求职者与招聘者双方偏好的新型深度文本匹配模型。...现有针对人岗匹配推荐问题的研究通常集中在学习简历文档以及岗位描述文档自身的表示后计算双方的匹配度。...然而,在互联网求职招聘场景下,除了求职者与招聘者双方的文本信息之外,还存在大量的历史交互行为信息可以应用于人岗匹配推荐任务。...方法描述 如图所示,文本提出的模型由招聘者与求职者双边对称的表示学习网络,以及匹配网络三部分组成。 ?...HRNNM:基于层级 GRU 编码的文档匹配模型 7. PJFNN:[1] 中提出的基于卷积神经网络的匹配模型 8.

    2.1K10

    小布助手对话短文本语义匹配

    意图识别是对话系统中的一个核心任务,而对话短文本语义匹配是意图识别的主流算法方案之一。 训练数据 训练数据包含输入query-pair,以及对应的真值。...真值:真值可为0或1,其中1代表query-pair语义相匹配,0则代表不匹配,真值与query-pair之间也用\t分割。...测试数据样本举例(空白间隔为\t) 冠军方案 全部 代码  ,方案详情 获取方式: 关注微信公众号 datayx  然后回复 语义匹配  即可获取。...前海征信大数据算法:风险概率预测 【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类 VGG16迁移学习,实现医学图像识别分类工程项目 特征工程(一) 特征工程(二) :文本数据的展开...全球AI挑战-场景分类的比赛源码(多模型融合) 斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏) python+flask搭建CNN在线识别手写中文网站 中科院Kaggle全球文本匹配竞赛华人第

    1.3K40

    搜狐文本匹配算法大赛方案总结

    赛题任务 本次比赛的数据均来自人工标注,数据均为文字片段,每两个片段为一组,参赛选手需要为每对文本在两个颗粒度上判断文本对中的两段文字是否匹配。...参赛选手需要正确判断两段文字是否匹配,数据分为A和B两个文件,A和B文件匹配标准不一样。 A文件匹配标准较为宽泛,两段文字是同一个话题便视为匹配。...文件内,source为第一段文字 ,target第二段文字 ,labelA为A文件中匹配情况,labelB为B文件中匹配情况,“0”表示不匹配,“1”表示匹配。...划分阈值(解决类别不平衡,效果有提升) 长文本处理-摘要提取,使用Snownlp提取多个摘要,并用TextRank计算最重要的摘要,尝试两种方案: 对所有长文本摘要提取,并替换原文本(效果不好) 只对短长...提出了 6 种 Type Token 来引导文本的表示学习: Token任务类型SSA短短匹配 A 类SSB短短匹配 B 类SLA短长匹配 A 类SLA短长匹配 A 类LLA长长匹配 A 类LLB长长匹配

    1.2K20

    ESIM 短文本匹配 模型解读分析

    ESIM是一个综合应用了BiLSTM和注意力机制的模型,在文本匹配中效果十分强大....文本匹配说就是分析两个句子是否具有某种关系,比如有一个问题,现在给出一个答案,我们就需要分析这个答案是否匹配这个问题,所以也可以看成是一个二分类问题(输出是或者不是)。...简介 ESIM模型主要是用来做文本推理的,给定一个前提premise pp 推导出假设hypothesis pp,其损失函数的目标是判断pp与hh是否有关联,即是否可以由pp推导出hh,因此,该模型也可以做文本匹配...ESIM使用的损失函数就是来判断输入的两个句子是否语义相匹配匹配为1, 不匹配为0;因此使用交叉熵损失函数。

    2.1K52

    Linux文本

    我之前已经用文本编辑器修改过文本。现在,我们要深入理解所谓的“文本”。...(说句题外话,如果看过骇客帝国的话,一定会对文本流印象深刻。) ?...命令行随后调用/bin/ls得到结果("a.txt"),最后这个输出的文本流("a.txt")流到屏幕,显示出来,比如说: a.txt 假设说我们不想让文本流流到屏幕,而是流到另一个文件,我们可以采用重新定向...比如cat命令,它可以从标准输入读入文本流,并输出到标准输出: $cat < a.txt 我们将cat标准输入指向a.txt,文本会从文件流到cat,然后再输出到屏幕上。...a.txt中的文本先流到cat,然后从cat的标准输出流到wc的标准输入,从而让wc知道自己要处理的是a.txt这个字符串。 Linux的各个命令实际上高度专业化,并尽量相互独立。

    3.2K90

    深度文本匹配在智能客服中的应用

    深度文本匹配的简介 1. 文本匹配的价值 2. 深度文本匹配的优势 3. 深度文本匹配的发展路线 二. 智能客服的简介 1. 智能客服的应用背景 2....深度文本匹配在智能客服中的应用 1. 为什么使用深度文本匹配 2. 怎么样使用深度文本匹配 深度文本匹配模型 文本匹配引擎 3. 深度智能客服的效果评测 四. 参考 ▌一、深度文本匹配的简介 1....因此,这两个模块在实现时使用的模型往往不同,在我们的文本匹配引擎中,语义召回使用的是基于表示型的深度文本匹配模型,相似度模型使用的是基于交互型的深度文本匹配模型和其他传统文本匹配模型的混合模型。...▌三、深度文本匹配在智能客服中的应用 1. 为什么使用深度文本匹配 问题聚类、语义召回和相似度模型都可以归结为文本匹配问题。...每个模型都有独到之处,如何利用不同模型的优点去做集成,是任何文本匹配引擎都需要解决的问题。我们的文本匹配引擎融合了传统文本匹配模型和深度文本匹配模型,具体的框架如图 9 所示。 ?

    2K60

    中科院发布:深度文本匹配开源工具

    -免费加入AI技术专家社群>> 中国科学院计算技术研究所网络数据科学与技术重点实验室近日发布了深度文本匹配开源项目MatchZoo。...MatchZoo是一个Python环境下基于TensorFlow开发的开源文本匹配工具,让大家更加直观地了解深度文本匹配模型的设计、更加便利地比较不同模型的性能差异、更加快捷地开发新型的深度匹配模型。...不同的数据生成器可适用于不同的文本匹配任务,如文本问答、文本对话、以及文本排序等。...Keras中包含了深度学习模型中广泛使用的普通层,如卷积层、池化层、全连接层等,除此之外,在matchzoo/layers/中,我们还针对文本匹配定制了特定的层,如动态池化层、张量匹配层等。...这些基本的层操作使得我们能够快速高效地实现复杂的深度文本匹配的模型,在matchzoo/models/中,我们实现了目前主流的深度文本匹配模型(如DRMM, MatchPyramid, DUET, MVLSTM

    1.5K90
    领券