在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
JVM本质就是一个进程,因此其内存空间(也称之为运行时数据区,注意与JMM的区别)也有进程的一般特点。深入浅出 Java 中 JVM 内存管理,这篇参考下。
现代的应用程序都运行在一个内存空间里,在 32 位系统中,这个内存空间拥有 4GB (2 的 32 次方)的寻址能力。
1、高位地址:栈(存放着局部变量和函数参数等数据),向下生长 (可读可写可执行)
对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础。
C/C++程序为编译后的二进制文件,运行时载入内存,运行时内存分布由代码段、初始化数据段、未初始化数据段、堆和栈构成,如果程序使用了内存映射文件(比如共享库、共享文件),那么包含映射段。Linux环境程序典型的内存布局如图1-5所示。
这个问题展开可以聊的东西非常多,从编程语言到可执行文件,从堆栈空间到虚拟内存,可以帮助面试官快速了解候选人这部分的知识储备。
在多任务操作系统中,每个进程都运行在属于自己的内存沙盘中。这个沙盘就是虚拟地址空间(Virtual Address Space),在32位模式下它是一个4GB的内存地址块。在Linux系统中, 内核进程和用户进程所占的虚拟内存比例是1:3,而Windows系统为2:2(通过设置Large-Address-Aware Executables标志也可为1:3)。这并不意味着内核使用那么多物理内存,仅表示它可支配这部分地址空间,根据需要将其映射到物理内存。
程序如果要被CPU执行,就得编译成CPU可以执行的指令,一大堆的程序就变成了一堆的指令。
虚拟地址空间(Virtual Address Space)是每一个程序被加载运行起来后,操作系统为进程分配的虚拟内存,它为每个进程提供了一个假象,即每个进程都在独占地使用主存。
当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:
学习安卓的架构,是从操作系统的角度理解安卓。安卓使用Linux内核,但安卓的架构又与常见的Linux系统有很大的区别。我们先来回顾一下传统的Linux架构,再来看安卓的变化。 Linux系统架构 先来
谷歌安全研究人员在Linux Kernel中发现了一组蓝牙漏洞(BleedingTooth),该漏洞可能允许攻击者进行零点击攻击,运行任意代码或访问敏感信息。
在《你真的理解内存分配》一文中,我们介绍了 malloc 申请内存的原理,但其在内核怎么实现的呢?所以,本文主要分析在 Linux 内核中对堆内存分配的实现过程。
许多人都认为Linux是最安全的操作系统,因此在对Linux的安全问题上也放松了警惕。那么事实真的如此吗?其实安全从来都只是相对的,Linux也不例外。虽然它加载了强大的安全机制,但仍可能受到来自各方面带来的安全威胁。本文我们主要将讨论有关Linux架构的主要利用技术,以及相关的安全防御措施。
(2)零拷贝完全依赖操作系统,操作系统提供了就是提供了,没有提供就没有提供,java本身做不了任何事情
本章还是关于NIO的概念铺底,有关NIO相关的代码,我还是希望大家闲余时间取网上找一下有关使用JDK NIO开发服务端、客户端的代码,我会取写这些,但是具体的代码我不会很详细的取介绍,下一章的话可能就要上代码了,具体的规划如下:
Linux内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。Linux的空间又分为内核空间和用户空间,在32位中,内核空间占1G,用户空间占3G;而在64位中,内核空间和用户空间各占128T。如图3-24所示。
在笔者上一篇博客,详解了NIO,并总结NIO相比BIO的效率要高的三个原因,点击查看。
堆外内存除了在像netty开源框架中,在平常项目中使用的比较少,在现前的项目中,QPS要求高的系统中,堆外内存作为其中一级缓存是相当有成效的。所以来学习一下,文中主要涉及到这三分部内容
零拷贝技术(Zero-Copy)是一个大家耳熟能详的技术名词了,它主要用于提升 IO(Input & Output)的传输性能。
前段时间,sudo被曝不要密码就可进行root提权的漏洞引起一片哗然,众多公司纷纷连夜打补丁来避免损失。FreeBuf也对此进行了相应的报道《不用密码就能获取root权限?sudo被曝新漏洞》。
本系列将按照类别对题目进行分类整理,重要的地方标上星星,这样有利于大家打下坚实的基础。
前言:tomcat一度是web容器的标准,但是tomcat的并发量却只有200-400之间,即使现在有了aio模式,也没有提升太多。所以现在大部分都是使用netty作为高性能服务器框架,在dubbo,
最近在Linux内核中发现了一个堆溢出错误。该补丁现在可以在大多数主要的Linux发行版中使用。
今天要探讨的是最近不知道为什么突然间火起来的面试题:当JAVA程序出现OOM之后,程序还能正常被访问吗?答案是可以的,很多时候他并不会直接导致程序崩溃,而是JVM会抛出一个error,告知你程序内存溢出了。当然也要分操作系统。
不知不觉编程也有十几年了,在编程过程中遇到了很多的技术牛人,不同的风格,今天正好有空给大家分享下。由于时间所限制不能一一陈列,现只是分三类来介绍 知识渊博型,深不见底 笔者刚工作第一家公司是一个做嵌入
Flink的内存管理是基于JVM内存模型的,所以,在内存调优或者解决各种OOM等问题时JVM内存管理是绕不开的话题。本文以Direct Memory为切入点,探索堆外内存、直接内存、以及他们在Java NIO源码中如何体现的。最后,简单介绍Java NIO的零拷贝在Kafka和Netty中的应用。
java 程序是运行在jvm 虚拟机里面的,离开jvm虚拟机,那么java程序无法直接在linux平台的运行。 所以java应用程序和os 平台之间是隔着jvm虚拟机的。 所谓的jvm虚拟机,本质上就是一个进程,此时它的内存模型和普通的进程有相同之处,但它又是java程序的管理者,所以它又有自己独特的内存模型. 从os层面来看jvm的进程,其内存模型包含如下几个部分: 内核内存 + jvm的code + jvm的data + jvm的 heap + jvm的stack + unused memory. 其中的heap, stack 就是我们常说的“堆栈” 空间. 我们更多需要从jvm作为java程序管理者的角度来看其内存模型: 此时jvm的内存空间可以分为两大类,分别是 “堆内存” 以及“非堆内存”,其中前者是可以分配给java程序使用的,而后者则是jvm进程自己使用的。 所以“堆内存”是我们要讨论的重点:
之前写了两篇详细分析 Linux 内存管理的文章,读者好评如潮。但由于是分开两篇来写,而这两篇内容其实是有很强关联的,有读者反馈没有看到另一篇读起来不够不连贯,为方便阅读这次特意把两篇整合在一起,看这一篇就够了!
计算机如何执行进程呢?这是计算机运行的核心问题。即使已经编写好程序,但程序是死的。只有活的进程才能产出。我们已经从Linux进程基础中了解了进程。现在我们看一下从程序到进程的漫漫征程。 一段程序 下面是一个简单的C程序,假设该程序已经编译好,生成可执行文件vamei.exe。 #include <stdio.h> int glob=0; /*global variable*/ void main(void) {
想写这个系列很久了,对自己也是个总结与提高。原来在学JAVA时,那些JAVA入门书籍会告诉你一些规律还有法则,但是用的时候我们一般很难想起来,因为我们用的少并且不知道为什么。知其所以然方能印象深刻并学以致用。
提到单片机很多人都很觉得不陌生,大街小巷上面电子产品都用到。近几年随着嵌入式的发展,智能机器人是未来一个大方口,其实智能机器人也是嵌入式的一种,里面融入了生物科学。做单片机的一帮家伙突然觉得大祸临头一般发现自己熟悉掌握的单片机慢慢被嵌入式超越了,那么嵌入式到底是啥玩意,和单片机有啥区别,怎么完成顺利的转化。 从严格意义上来说,单片机是嵌入式的一个子集,嵌入式其实就是对单片机系统的升级,附加了更多的功能,最普通的单片机只需要一个while循环在里面操作实施就可以了,在嵌入式层次已经升级到操作系统级别,在这
我们以用户通过网络读取一个本地磁盘上文件为例,在说零拷贝之前,我们先要说说一个普通的IO操作是怎样做的
嵌入式学习太广泛,要学习的东西忒多。根据自己的选择,你要干硬件,还是软件等等。我们就从基础说起吧! 软件基础: 一、编程基础 C/C++语言学习书籍,谭浩强C语言程序设计、《The C Programming Language》、C和指针、C++ Primer、《高质量C/C++编程指南》最后这个一定要看哦结合这将会对C基础有重新的认识。C++第一些东西那就更高深了,等学好基础在去看提高的东西比如深入《C++对象模型》以上这些书在本头条的其他文章已经介绍了请查阅。 二、linux 现在嵌入式都是linux的
https://www.cnblogs.com/poloyy/category/1806772.html
1. fuzz的概念,afl与程序交互的方法,afl fuzz过什么?afl有什么成果
本文转自:https://www.cnblogs.com/huxiao-tee/p/4660352.html
前言 JVM的堆外内存泄露的定位一直是个比较棘手的问题。此次的Bug查找从堆内内存的泄露反推出堆外内存,同时对物理内存的使用做了定量的分析,从而实锤了Bug的源头。笔者将此Bug分析的过程写成博客,以飨读者。 由于物理内存定量分析部分用到了linux kernel虚拟内存管理的知识,读者如果有兴趣了解请看ulk3(《深入理解linux内核第三版》) 内存泄露Bug现场 一个线上稳定运行了三年的系统,从物理机迁移到docker环境后,运行了一段时间,突然被监控系统发出了某些实例不可用的报警。所幸有负载均衡,
JVM的堆外内存泄露的定位一直是个比较棘手的问题。此次的Bug查找从堆内内存的泄露反推出堆外内存,同时对物理内存的使用做了定量的分析,从而实锤了Bug的源头。笔者将此Bug分析的过程写成博客,以飨读者。
JVM的堆外内存泄露的定位一直是个比较棘手的问题。此次的Bug查找从堆内内存的泄露反推出堆外内存,同时对物理内存的使用做了定量的分析,从而实锤了Bug的源头。笔者将此Bug分析的过程写成博客,以飨读者。 由于物理内存定量分析部分用到了linux kernel虚拟内存管理的知识,读者如果有兴趣了解请看ulk3(《深入理解linux内核第三版》)
一直以来 go 的 runtime 在释放内存返回到内核时,在 Linux 上使用的是 MADV_DONTNEED,虽然效率比较低,但是会让 RSS(resident set size 常驻内存集)数量下降得很快。不过在 go 1.12 里专门针对这个做了优化,runtime 在释放内存时,使用了更加高效的 MADV_FREE 而不是之前的 MADV_DONTNEED。具体可以参考这里:
领取专属 10元无门槛券
手把手带您无忧上云