在我的文章《使用开源工具识别 Linux 性能瓶颈》中,我解释了一些使用开源的图形用户界面(GUI)工具监测 Linux 性能的简单方法。我的重点是识别 性能瓶颈,即硬件资源达到极限并阻碍你的 PC 性能的情况。
在 Linux 系统(比如 CentOS/RadHat、Debian/Ubuntu)上配置 lnmp环境,通过探针查看物理内存使用率:
可以看到使用不同的参数会将内存占用情况以不同的形式呈现出来,其中各个数字的意义如下: total: 物理内存的大小,就是机器实际的内存大小; used: 已使用的内存大小,这个值包括了cache和应用程序实际使用的内存; free: 尚未被使用的内存大小; shared: 共享内存的大小; buff/cache: 被缓冲区和缓存占用的内存大小; available: 该项是新版的free中增加的一项,表示可用内存大小。
Linux Swap 分区大小跟你服务器本身的物理内存大小有关,内存越大,设置的 Swap 分区也应该越大,两者的关系如下。
Linux 之父Linus Torvald:庆祝完Linux 30 岁了吧,一起来看新的 Linux 5.14。
从 开发角度 看 , 基于 过程 结构 , 开发人员可以参与 整体 Linux 内核的开发过程 , 这是一个 开放式的结构 , 允许任何开发人员对其进行 修改 ;
分区伙伴分配器概念 : Linux 内核 在 基本 伙伴分配器 基础上 , 增加了对 " 内存节点 “ 和 ” 内存区域 “ 的支持 , 这就是 ” 分区伙伴分配器 “ , 英文名称为 ” Zond Buddy Allocator " ;
Linux内核是高并发服务的关键组件之一。以下是一些可用于优化Linux内核的配置。
一谈到Linux系统分析,大多数开发觉得不了解也没有关系,但是了解了可以帮你走的更远。从开发的角度了解CPU,MEMORY,IO,NETWORK。在日常工作中我们也会遇到一些Linux系统性能的问题,
Linux 进程的管理和控制是系统管理和应用开发中非常重要的一部分。在 Linux 系统中,有许多工具和命令可以用于进程的管理和控制,例如 ps、kill、top 等。本文将介绍 Linux 进程的管理和控制,包括进程的查看、结束、挂起、恢复等操作。
分别复制tomcat目录下的 conf logs temp webapps work 这5个目录到 test1 和 test2下。
我们知道使用Linux交换空间而不是 RAM(内存)会严重降低性能。那么,有人可能会问,既然我有足够多的可用内存,删除交换空间不是更好吗?简短的回答是不会。启用交换空间会带来性能优势,即使你有足够多的内存。 即使安装了足够多的服务器内存,你也会经常发现在长时间正常运行后会使用交换空间。请参阅以下来自具有大约一个月正常运行时间的实时聊天服务器的示例: total used free shared buff/cache available
本文介绍了Linux平台上一个名为“Linux易用剖析器(LEP)”的剖析工具,用于分析Linux应用程序的性能。LEP通过记录和分析系统调用、进程状态、内存使用、I/O操作等方面的信息,帮助开发人员诊断和解决Linux应用程序的性能问题。
PostgreSQL的默认最大连接数是100个,但是这个参数可以在服务器启动时进行设置。如果您想增加最大连接数,您还需要同时增加shared_buffers和kernel.shmmax的值,以提高数据库的缓存能力和性能。但是,增加连接数也会消耗更多的内存,所以您应该根据您的系统资源和应用需求来合理调整这个参数。如果您的应用需要大量的连接,您可以考虑使用pg_bouncer等工具来进行连接池管理。
当今无论什么操作系统交换Swap空间是非常常见的。Linux 使用交换空间来增加主机可用的虚拟内存。它可以在常规文件或逻辑卷上使用一个或多个专用交换分区或交换文件。
随着国内站长的基数不断增加,很多人都使用起了 linux VPS 来做为网站的基础,而linux 面板则成为了国人的最爱。因为手动编译 php 的各种基础环境包,对于大多数新手站长来说就是一个噩梦。幸好国内外出了不少免费版的 linux 面板,国外的不说,国内免费的就有WDCP 面板、AMH4.2 面板、宝塔 linux 面板等等。 AMH4.2 面板之后版本就开始收费了,自然会影响到新增用户的数量,WDCP 面板停滞了很久之后才开始升级,目前用户是挺多的,建站的功能倒是都全了,就是给人感觉后台的简洁程度不
一般互联网的项目都是部署在linux服务器上的,如果linux服务器出了问题,那么咱们平时学习的高并发,稳定性之类的是没有任何意义的,所以对linux性能的把握就显得非常重要,当然很多同学可能觉得这些是运维同学的事情,但是我不这么认为,不管你是架构师,还是crud boy,对项目有个全局的掌控是一项非常重要的基本素质,所以总结了这篇文章,希望对您有用,如果您觉得我写的还不错,看完记得点个赞,点个再看哦。咱们废话不用多说,直接进入正题。
Linux 将物理内存分为内存段,叫做页面。交换是指内存页面被复制到预先设定好的硬盘空间(叫做交换空间)的过程,目的是释放对于页面的内存。物理内存和交换空间的总大小是可用的虚拟内存的总量。
学习安卓的架构,是从操作系统的角度理解安卓。安卓使用Linux内核,但安卓的架构又与常见的Linux系统有很大的区别。我们先来回顾一下传统的Linux架构,再来看安卓的变化。 Linux系统架构 先来
Elasticsearch 的官方地址:https://www.elastic.co/cn/
本篇原文作者是 LinkedIn 的 Swapnil Ghike,这篇文章讲述了 LinkedIn 的 Feed 产品的 GC 优化过程,虽然文章写作于 April 8, 2014,但其中的很多内容和知识点非常有参考意义。因此,翻译后献给各位同学。
内存虚拟化是一个很大的话题,最近安全部门发现了一个qemu内存虚拟化的安全漏洞,反馈给云平台让解决,感觉很棘手,引起了我对内存虚拟化的思考,想到什么问题就把思考记录下来。
在Linux中,透明巨页(Transparent HugePage)和巨页(HugePage)是两种不同的内存管理技术。 透明巨页是Linux内核中的一项特性,旨在提高内存的利用率和性能。它通过将内存分配为更大的巨页(通常为2MB或1GB),减少了对内存页表的访问次数,从而提高了内存访问的效率。透明巨页是透明的,应用程序无需进行任何修改即可受益于这种内存管理技术。 而巨页是指一种更大尺寸的内存页,在Linux中可以使用不同的页面大小,常见的巨页大小是2MB或1GB。巨页可以提供更高的内存访问性能,因为它减少了页表的数量,降低了TLB(Translation Lookaside Buffer)缓存的压力,从而减少了内存访问的开销。巨页需要应用程序进行适当的修改和配置才能使用。 因此,透明巨页和巨页都是通过增加内存页的尺寸来提高内存访问性能,但透明巨页不需要应用程序的修改,而巨页需要应用程序的支持和配置。
linux内存管理卷帙浩繁,本文只能层层递进地带你领略冰山轮廓,通过本文你将了解到以下内容:
cgroup还有其他一些限制特性,如io,pid,hugetlb等,这些用处不多,参见Cgroupv1。下面介绍下与系统性能相关的io和hugepage,cgroup的io介绍参考Cgroup - Linux的IO资源隔离
大多数Linux 发布版都定义了适当的缓冲区和其他 Transmission Control Protocol(TCP)参数。可以修改这些参数来分配更多的内存,从而改进网络性能。设置内核参数的方法是通过 proc 接口,也就是通过读写 /proc 中的值。幸运的是,sysctl 可以读取 /etc/sysctl.conf 中的值并根据需要填充/proc,这样就能够更轻松地管理这些参数。清单2 展示在互联网服务器上应用于 Internet 服务器的一些比较激进的网络设置。
内存的管理和优化是系统性能优化的一个重要部分,内存资源的充足与否直接影响应用系统的使用性能。在进行内存优化之前,一定要熟悉Linux的内存管理机制,这里我们重点探讨如何通过系统命令监控Linux系统的内存使用状况。
在启动一个Springboot工程时,抛出一项“Cannot allocate memory”异常,很明显,是因为内存分配原因导致的OOM异常导致JVM宕掉。跟随log,查看JVM hs_err_pid24442.log文件。
高性能应用构成了现代网络的支柱。LinkedIn有许多内部高吞吐量服务来满足每秒数千次的用户请求。要优化用户体验,低延迟地响应这些请求非常重要。 比如说,用户经常用到的一个功能是了解动态信息——不断更
很多初学者在安装 Linux 系统时,都对自己的电脑配置存在质疑,担心其是否能够满足安装 Linux 的要求。本节就从 CPU、内存、硬盘、显卡等这些方面,详细介绍一下安装 Linux 系统的最低配置。
问:我是一个Ubuntu 14.04 LTS版本的新手。我需要一块额外的swap文件来提高我Ubuntu服务器的性能。我怎样才能通过SSH连接用相关命令为我的Ubuntu 14.04 LTS 增加一块swap分区。
在实际的软件开发过程中,内存问题常常是耗费大量时间进行分析的挑战之一。为了更有效地定位和解决与内存相关的难题,一系列辅助工具应运而生,其中备受赞誉的Valgrind工具便是其中之一。事实上,笔者本人曾利用Valgrind工具成功地发现并解决了一个隐藏在软件中的bug,这充分体现了工具在开发过程中的重要性。
CentOS是根据RHEL释放出的源代码二次编译而成,并去掉了RHEL一些商业图标等版权信息。因此CentOS与RHEL大部分是一样的,但也有不同:
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
在我们日常工作中,可能会发现free的值(空闲)越来越低,我们会直观的认为内存耗尽,到达瓶颈了,其实,这只是Linux的为了提高文件读取的性能的内存使用机制罢了。不同于Windows,windows程序执行完后,会马上释放掉内存,把Memory降下来。而对于Linux,如果你的服务器内存还有足够多的空间的话,Linux会把程序运行的数据缓存起来,加入到Cache中,所以内存会不断增加,直到一定的限度为止.当超过这限度后,内核必须将脏页写回磁盘,以便释放内存。也就是说,当空闲内存低于一个特定的阈值时,内核的守护进程就会进行内存块回收,那我们如何判断内存达到瓶颈呢?
交换空间是当今计算的一个共同方面,不管操作系统如何。Linux使用交换空间来增加主机可用的虚拟内存量。它可以在常规文件系统或逻辑卷上使用一个或多个专用交换分区或交换文件。
在这篇文章中,我们将深入分析Kubernetes中的典型退出码127与137,解释它们是什么,K8s和Docker中常见的原因是什么,以及如何修复
系统性能一直是一个受关注的话题,如何通过最简单的设置来实现最有效的性能调优,如何在有限资源的条件下保证程序的运作,ulimit 是我们在处理这些问题时,经常使用的一种简单手段。ulimit 是一种 linux 系统的内键功能,它具有一套参数集,用于为由它生成的 shell 进程及其子进程的资源使用设置限制。
本篇原文作者是 LinkedIn 的 Swapnil Ghike,这篇文章讲述了 LinkedIn 的 Feed 产品的 GC 优化过程,虽然文章写作于 April 8, 2014,但其中的很多内容和知识点非常有学习和参考意义。因此,翻译后献给各位同学。原文 Garbage Collection Optimization for High-Throughput and Low-Latency Java Applications,链接见参考 [1]。
当时有些地方写的比较笼统,然后我「把 Linux 接收+发送网络包的流程」这部分内容完善了下,现在重新分享给大家。
1、错误提示:java.lang.OutOfMemoryError: Java heap space
③ 引导内存分配器 : 页分配器 , 块分配器 , 不连续页分配器 , 连续内存分配器 , 每处理器内存分配器 ;
MEMORY_TARGET参数在Oracle 11g被引进,主要是用于控制Oracle对于系统内存的使用,首次将SGA与PGA整合到一起实现自动管理。一旦设置了MEMORY_TARGET参数值,Oracle会根据需要自动调整SGA与PGA以合理的分配及使用内存。但如果MEMORY_TARGET设置不当,就容易引起ORA-00845,因为MEMORY_TARGET与/dev/shm(tempfs)息息相关,本文即是对由此引发问题的描述。
为什么选择Linux?因为Linux能让你掌握你所做的一切! 为什么痛恨Windows?因为Windows让你不知道自己在做什么! 这就是我喜欢Linux的原因。只要我愿意,我可以将底层的系统运行机制看得清清楚楚,可以掌握一切。而Windows尽管界面漂亮,却让你总也猜不透她心里想什么。我不喜欢若即若离的感觉。 如果你一看到这个标题就觉得头疼,或者对Linux的内部技术根本不关心,那么,我劝你一句:别用Linux了。你只是在追赶潮流,并不是真心喜欢它。Linux的确没有Windows好用,可它比Windows“结实”。如果你对Linux的稳定性感兴趣,特别是想把Linux作为网站服务器的话,那就请看看下文吧! Swap,即交换区,除了安装Linux的时候,有多少人关心过它呢?其实,Swap的调整对Linux服务器,特别是Web服务器的性能至关重要。通过调整Swap,有时可以越过系统性能瓶颈,节省系统升级费用。 本文内容包括: Swap基本原理 突破128M Swap限制 Swap配置对性能的影响 Swap性能监视 有关Swap操作的系统命令 Swap基本原理 Swap的原理是一个较复杂的问题,需要大量的篇幅来说明。在这里只作简单的介绍,在以后的文章中将和大家详细讨论Swap实现的细节。 众所周知,现代操作系统都实现了“虚拟内存”这一技术,不但在功能上突破了物理内存的限制,使程序可以操纵大于实际物理内存的空间,更重要的是,“虚拟内存”是隔离每个进程的安全保护网,使每个进程都不受其它程序的干扰。 Swap空间的作用可简单描述为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用。那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间被临时保存到Swap空间中,等到那些程序要运行时,再从Swap中恢复保存的数据到内存中。这样,系统总是在物理内存不够时,才进行Swap交换。 计算机用户会经常遇这种现象。例如,在使用Windows系统时,可以同时运行多个程序,当你切换到一个很长时间没有理会的程序时,会听到硬盘“哗哗”直响。这是因为这个程序的内存被那些频繁运行的程序给“偷走”了,放到了Swap区中。因此,一旦此程序被放置到前端,它就会从Swap区取回自己的数据,将其放进内存,然后接着运行。 需要说明一点,并不是所有从物理内存中交换出来的数据都会被放到Swap中(如果这样的话,Swap就会不堪重负),有相当一部分数据被直接交换到文件系统。例如,有的程序会打开一些文件,对文件进行读写(其实每个程序都至少要打开一个文件,那就是运行程序本身),当需要将这些程序的内存空间交换出去时,就没有必要将文件部分的数据放到Swap空间中了,而可以直接将其放到文件里去。如果是读文件操作,那么内存数据被直接释放,不需要交换出来,因为下次需要时,可直接从文件系统恢复;如果是写文件,只需要将变化的数据保存到文件中,以便恢复。但是那些用malloc和new函数生成的对象的数据则不同,它们需要Swap空间,因为它们在文件系统中没有相应的“储备”文件,因此被称作“匿名”(Anonymous)内存数据。这类数据还包括堆栈中的一些状态和变量数据等。所以说,Swap空间是“匿名”数据的交换空间。 突破128M Swap限制 经常看到有些Linux(国内汉化版)安装手册上有这样的说明:Swap空间不能超过128M。为什么会有这种说法?在说明“128M”这个数字的来历之前,先给问题一个回答:现在根本不存在128M的限制!现在的限制是2G! Swap空间是分页的,每一页的大小和内存页的大小一样,方便Swap空间和内存之间的数据交换。旧版本的Linux实现Swap空间时,用Swap空间的第一页作为所有Swap空间页的一个“位映射”(Bit map)。这就是说第一页的每一位,都对应着一页Swap空间。如果这一位是1,表示此页Swap可用;如果是0,表示此页是坏块,不能使用。这么说来,第一个Swap映射位应该是0,因为,第一页Swap是映射页。另外,最后10个映射位也被占用,用来表示Swap的版本(原来的版本是Swap_space ,现在的版本是swapspace2)。那么,如果说一页的大小为s,这种Swap的实现方法共能管理“8 * ( s - 10 ) - 1”个Swap页。对于i386系统来说s=4096,则空间大小共为133890048,如果认为1 MB=2^20 Byte的话,大小正好为128M。 之所以这样来实现Swap空间的管理,是要防止Swap空间中有坏块。如果系统检查到Swap中有坏块,则在相应的位映射上标记上0,表示此页不可用。这样在使用Swap时,不至于用到坏块,而使系统产生错误。
HugePage,就是指的大页内存管理方式。与传统的4kb的普通页管理方式相比,HugePage为管理大内存(8GB以上)更为高效。本文描述了什么是HugePage,以及HugePage的一些特性。
前言: 在虚拟化场景下,libvirt会为每个qemu进程,也就是一台虚拟机,创建对应的cgroup,用来限制这台虚拟机的资源使用。这章讨论一下cgroup对内存的限制、回收能力对虚拟机的影响。 Centos7使用Linux 3.10。Ubuntu1604使用Linux 4.4。这章主要分析这两个版本的kernel的能力对比。 分析: 1,使用场景 在内存复用的场景下,会使用到cgroup的内存限制能力。举例来说,Host上有内存32G,每台Guest分配4G,那么可以启动8台Guest。如果内存超分配
在你使用 Linux 系统时,你可能在系统的进程列表中注意到了名为 "kworker" 的进程。你可能会想知道这个进程是什么,它在做什么,以及为什么有时候它会占用大量的 CPU。在这篇文章中,我们将详细地介绍 kworker 进程,它在系统中的角色,以及如何诊断和解决 kworker 导致的性能问题。
对称多处理器结构 , 英文名称为 " Symmetrical Multi-Processing " , 简称 SMP ;
嵌入式Linux中文站消息,Linux系统的Swap分区,即交换区,Swap空间的作用可简单描述为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用。那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间被临时保存到Swap空间中,等到那些程序要运行时,再从Swap中恢复保存的数据到内存中。这样,系统总是在物理内存不够时,才进行Swap交换。其实,Swap的调整对Linux服务器,特别是Web服务器的性能至关重要。通过调整Swap,有时可以越过系统性能瓶颈,节省系统升级费用。
领取专属 10元无门槛券
手把手带您无忧上云