首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Keras系列 (4)LSTM的返回序列和返回状态的区别

由于LSTM权重和单元状态的随机初始化,你的具体输出值会有所不同。 如果有需要, 我们也可要求Keras来输出每个输入时间步的隐藏状态。...这两个张量分开的原因将在其它的文章中会进行清楚的解释。我们可以通过下面列出的工作范例来演示如何访问LSTM层中单元格的隐藏和单元状态。...返回状态与序列 (Return States & Sequences) 我们可以同时访问隐藏状态序列和单元状态。 这可以通过配置LSTM层来返回序列和返回状态来完成。...这可以通过配置LSTM层来返回序列和返回状态来完成。...这次的LSTM该层会返回每个输入时间步的隐藏状态,然后分别返回最后一个时间步的隐藏状态输出和最后输入时间步的单元状态。

3K20

在Java中为什么不同的返回类型不算方法重载?

本文已收录《Java常见面试题》:https://gitee.com/mydb/interview 方法重载是指在同一个类中,定义了多个同名方法,但每个方法的参数类型或者是参数个数不同就是方法重载...doSomething } public void method(Integer id, String name) { // doSomething } } 为什么不同返回类型不算方法重载...从方法签名的组成规则我们可以看出,方法的返回类型不是方法签名的组成部分,所以当同一个类中出现了多个方法名和参数相同,但返回值类型不同的方法时,JVM 就没办法通过方法签名来判断到底要调用哪个方法了,如下图所示...: 那为什么返回类型不能做为方法签名的一部分呢?...总结 在同一个类中定义了多个同名方法,但每个方法的参数类型或者是参数个数不同就是方法重载。方法重载的典型使用场景是 String 中的 valueOf 方法,它有 9 种实现。

3.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Deep learning with Python 学习笔记(6)

    在处理两个不同的独立序列(比如两条不同的 IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输入。...Keras 中的所有循环层一样,SimpleRNN 可以在两种不同的模式下运行:一种是返回每个时间步连续输出的完整序列,即形状为 (batch_size, timesteps, output_features...Keras同时还内置了另外两个循环层:LSTM 和 GRU SimpleRNN 的最大问题不能学到长期依赖,其原因在于梯度消失问题。...LSTM 层和 GRU 层都是为了解决这个问题而设计的 LSTM(long short-term memory)层是 SimpleRNN 层的一种变体,它增加了一种携带信息跨越多个时间步的方法,保存信息以便后面使用...这二者都内置于 Keras 的循环层中,所以你只需要使用循环层的 dropout 和 recurrent_dropout 参数即可 最后是双向 RNN,它常用于自然语言处理 RNN是特别依赖顺序或时间的

    70820

    R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感

    通常情况下,生成器需要保持内部状态,所以它们通常是通过调用另一个又一个返回生成器函数的函数来构造的(返回生成器的函数的环境随后被用来跟踪状态)。 例如,下面产生一个无限的数字序列。...然而,传递给Keras训练方法(例如生成器函数应该总是无限地返回值(对生成器函数的调用次数由epochs和psych\_per\_epoch参数控制)。...Yarin Gal使用Keras进行研究,并帮助将这一机制直接构建到Keras的递归层中。...让我们在layer\_gru中加入dropout和recurrent dropout,看看这样做对过拟合有什么影响。...为了在Keras中把递归层堆叠起来,所有的中间层都应该返回它们的完整输出序列(一个三维张量),而不是它们在最后一个时间步的输出。

    10510

    入门 | 十分钟搞定Keras序列到序列学习(附代码实现)

    次要案例:当输入序列和输出序列长度相同 当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。...这一实例脚本中的案例展示了如何教会 RNN 学习添加被编码为字符串的数字: ? 一般案例:标准的 Seq2Seq 一般情况下,输入序列和输出序列有不同的长度(比如机器翻译)。...在推理模式中,即当要解码未知的输入序列,我们完成了一个稍微不同的处理: 把输入序列编码进状态向量 从大小为 1 的目标序列开始 馈送状态向量和 1 个字符的目标序列到解码器从而为下一字符生成预测 通过这些预测采样下一个字符...我们的模型使用 teacher forcing。 3. 解码一些语句以检查模型正在工作。 由于训练过程和推理过程(解码语句)相当不同,我们使用了不同的模型,虽然两者具有相同的内在层。...我想使用 GRU 层代替 LSTM,应该怎么做? 这实际上变简单了,因为 GRU 只有一个状态,而 LSTM 有两个状态。

    1.4K120

    十分钟掌握Keras实现RNN的seq2seq学习

    当输入和输出序列的长度相同时 当输入序列和输出序列具有相同长度的时候,你可以使用Keras LSTM或GRU层(或其堆叠)很轻松地实现这样地模型。...下面是它的工作原理: 有一个RNN层(或其堆叠)作为“编码器”:它负责处理输入序列并返回其自身的内部状态。注意,我们将丢弃编码器RNN的输出,只恢复状态。...在推理模式下,即当我们要解码未知输入序列时,过程稍稍会有些不同: 将输入序列编码为状态向量。 以大小为1的目标序列开始。 将状态向量和一个字符的目标序列提供给解码器,以产生下一个字符的预测。...由于训练过程和推理过程(译码句)是完全不同的,所以我们要使用不同的模型,尽管它们都是利用相同的内部层。 这是我们的训练模型。...它利用了Keras RNN的三个主要功能: return_state contructor参数,配置一个RNN层返回第一个条目是输出,下一个条目是内部RNN状态的列表。用于恢复编码器的状态。

    95640

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第15章 使用RNN和CNN处理序列

    图15-3 单元的隐藏状态和输出可能不同 输入和输出序列 RNN 可以同时输入序列并输出序列(见图 15-4,左上角的网络)。...只有1个层,1个神经元,如图15-1。不用指定输入序列的长度(和之前的模型不同),因为循环神经网络可以处理任意的时间步(这就是为什么将第一个输入维度设为None)。...笔记:默认时,Keras的循环层只返回最后一个输出。要让其返回每个时间步的输出,必须设置return_sequences=True。...首先,当前的输入矢量 x(t) 和前一时刻的短时状态 h(t-1) 作为输入,传给四个不同的全连接层,这四个全连接层有不同的目的: 输出 g(t)的层是主要层。...GRU单元是 LSTM 单元的简化版本,能实现同样的性能(这也说明了为什么它能越来越流行)。简化主要在一下几个方面: 长时状态和短时状态合并为一个矢量 h(t)。

    1.5K11

    直观理解并使用Tensorflow实现Seq2Seq模型的注意机制

    就像编码器一样,我们在这里也有一个嵌入层用于目标语言中的序列。序列中的每一个单词都在具有相似意义的相似单词的嵌入空间中表示。 我们也得到的加权和编码器输出通过使用当前解码隐藏状态和编码器输出。...这是通过调用我们的注意力层来实现的。 我们将以上两步得到的结果(嵌入空间序列的表示和编码器输出的加权和)串联起来。这个串联张量被发送到我们的解码器的GRU层。...返回单词预测概率和当前解码器隐藏状态。 将概率最大的字作为下一个解码器GRU单元(解码器对象)的输入,当前解码器隐藏状态成为下一个解码器GRU单元的输入隐藏状态。...解码器返回预测的字概率。概率最大的单词成为我们预测的单词,并被附加到最后的印地语句子中。这个字作为输入进入下一个解码器层。...根据可用的时间和计算能力,以下是一些点,可以尝试和测试,以知道如果他们工作时,实施良好: 使用堆叠GRU编码器和解码器 使用不同形式的注意力机制 使用不同的优化器 增加数据集的大小 采用Beam Search

    68520

    使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践

    同样的,我们也可以在双向RNN模型基础上加多几层隐藏层得到深层双向RNN模型。 注:每一层循环体中参数是共享的,但是不同层之间的权重矩阵是不同的。...Keras在layers包的recurrent模块中实现了RNN相关层模型的支持,并在wrapper模型中实现双向RNN包装器。...recurrent模块中的RNN模型包括RNN、LSTM、GRU等模型(后两个模型将在后面Keras系列文章讲解): 1.RNN:全连接RNN模型 SimpleRNN(units,activation=...,控制循环状态的线性变换的神经元失活比例 return_sequences: True返回整个序列,用于stack两个层,False返回输出序列的最后一个输出,若模型为深层模型时设为True input_dim...,确定是哪种RNN的双向模型 Merge_mode: 前向和后向RNN输出的结合方式,为sum,mul,concat,ave和None之一,若为None,则不结合,以列表形式返回,若是上文说到的拼接则为

    1K30

    模型层layers

    TensorFlow的中阶API主要包括: 数据管道(tf.data) 特征列(tf.feature_column) 激活函数(tf.nn) 模型层(tf.keras.layers) 损失函数(tf.keras.losses...) 评估函数(tf.keras.metrics) 优化器(tf.keras.optimizers) 回调函数(tf.keras.callbacks) 如果把模型比作一个房子,那么中阶API就是【模型之墙...设置return_sequences = True时可以返回各个中间步骤输出,否则只返回最终输出。 GRU:门控循环网络层。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。...结构上类似LSTM,但对输入的转换操作和对状态的转换操作都是卷积运算。 Bidirectional:双向循环网络包装器。可以将LSTM,GRU等层包装成双向循环网络。从而增强特征提取能力。...和LSTM在整个序列上迭代相比,它仅在序列上迭代一步。可以简单理解LSTM即RNN基本层包裹LSTMCell。 GRUCell:GRU单元。和GRU在整个序列上迭代相比,它仅在序列上迭代一步。

    1.4K20

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第16章 使用RNN和注意力机制进行自然语言处理

    第二,有状态RNN需要知道批次大小(因为要为批次中的输入序列保存状态),所以要在第一层中设置batch_input_shape参数。...模型剩下的部分就很简单了:有两个GRU层,第二个只返回最后时间步的输出。输出层只有一个神经元,使用sigmoid激活函数,输出评论是正或负的概率。然后编译模型,利用前面准备的数据集来训练几个周期。...模型自动将这个遮掩张量向前传递给所有层,只要时间维度保留着。所以在例子中,尽管两个GRU都接收到了遮掩张量,但第二个GRU层不返回序列(只返回最后一个时间步),遮掩张量不会传递到紧密层。...这就是为什么多头注意力层使用了多个不同的值、键、查询的线性变换:这可以让模型将词表征投影到不同的亚空间,每个关注于词特性的一个子集。...下一章,我们会学习用自编码器,以无监督的方式学习深度表征,并用生成对抗网络生成图片及其它内容! 练习 有状态RNN和无状态RNN相比,优点和缺点是什么?

    1.8K21

    深度学习——RNN(2)双向RNN深度RNN几种变种

    前言:前面介绍了LSTM,下面介绍LSTM的几种变种 双向RNN Bidirectional RNN(双向RNN)假设当前t的输出不仅仅和之前的序列有关,并且 还与之后的序列有关,例如:预测一个语句中缺失的词语那么需要根据上下文进...输出由这两个RNNs的隐藏层的状态决定。 ? 如下图: ? 网络构建的代码如下: # 开始网络构建 # 1....让门层也接受细胞状态的输入 ?...通过耦合忘记门和更新输入门(第一个和第二个门);也就是不再单独的考虑忘记什么、增 加什么信息,而是一起进行考虑。 ?...Gated Recurrent Unit(GRU),2014年提出 将忘记门和输入门合并成为一个单一的更新门 同时合并了数据单元状态和隐藏状态 结构比LSTM的结构更加简单 ?

    11K31

    使用Keras进行深度学习:(六)GRU讲解及实践

    目录 GRU原理讲解 Keras实现GRU 一、 GRU原理讲解 下图展示了GRU的网络结构,GRU的网络结构和LSTM的网络结构很相似,LSTM中含有三个门结构和细胞状态,而GRU只有两个门结构:更新门和重置门...更新门的作用是决定上一层隐藏层状态中有多少信息传递到当前隐藏状态h_t中,或者说前一时刻和当前时刻的信息有多少需要继续传递的(在最后的公式中可以看到此功能的表示,并有详细讲解更新门为什么有这个作用)。...当z_j越接近0为说明上一层隐藏状态的第j个信息在该隐藏层被遗忘,接近1则说明在该隐藏层继续保留。 2.重置门(reset gate): 和更新门的运算操作类似,只是权重矩阵不同而已。...比如在语言模型中,在当前时刻可能我们只需要知道当前时态和主语单复数就可以确定当前动词使用什么时态,而不需要其他更多的信息。...二、Keras实现GRU 在这里,同样使用Imdb数据集,且使用同样的方法对数据集进行处理,详细处理过程可以参考《使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践》一文。

    1.6K30

    深度学习算法中的门控循环单元(Gated Recurrent Units)

    具体来说,GRU由两个门控函数和一个更新门组成,可以对隐藏状态进行有效的更新。在GRU中,输入门控函数控制新信息的流入,更新门控函数控制旧信息的保留。...该模型包含一个GRU层和一个全连接层,其中GRU层用于捕捉序列数据的长期依赖关系,全连接层用于输出分类结果。在编译模型时,使用交叉熵损失函数和Adam优化器。...您可以根据需要调整模型参数,例如输入维度、隐藏状态维度、输出维度等,以适应不同的任务。应用GRU广泛应用于各种深度学习算法中,尤其在语言模型、机器翻译、语音识别等领域取得了显著的成果。...该模型包含一个GRU层、一个Dropout层和一个全连接层,其中GRU层用于捕捉语音信号的时间序列信息,Dropout层用于减少过拟合,全连接层用于输出识别结果。...在编译模型时,使用交叉熵损失函数和Adam优化器。您可以根据需要调整模型参数,例如输入维度、隐藏状态维度、输出维度等,以适应不同的任务。

    1K31

    LSTM原理及Keras中实现

    如果你的朋友第二天问你评论说什么,你不可能一字不漏地记住它。但你可能还记得主要观点,比如“肯定会再次购买”。其他的话就会从记忆中逐渐消失。 这基本上就是LSTM或GRU的作用。...细胞状态充当高速公路,在序列链中传递相关信息。门是不同的神经网络,决定在细胞状态上允许那些信息。有些门可以了解在训练期间保持或忘记那些信息。...7.gif 输出门 输出门可以决定下一个隐藏状态应该是什么,并且可用于预测。首先将先前的隐藏状态和当前的输入传给sigmoid函数,然后将新修改的细胞状态传递给tanh函数,最后就结果相乘。...输出的是隐藏状态,然后将新的细胞状态和新的隐藏状态移动到下一个时间序列中。 8.gif 数学描述 从上述图解操作,我们可以轻松的理解LSTM的数学描述。...Sequetial 表示我们将使用层堆叠起来的网络,这是Keras中的基本网络结构。 Dense, Activation, Dropout 这些是神经网络里面的核心层,用于构建整个神经网络。

    12.8K125

    文本序列中的深度学习

    LSTM和GRU网络层 SimpleRNN并不是Keras唯一的循环网络层,还有LSTM和GRU。实际应用时,通常不使用SimpleRNN,因为SimpleRNN过于简单,无法实际使用。...从概念上讲,信息数据流是一种调制下一个输出和下一个状态的方法。 微妙之处:计算Ct数据流的下一个值的方式。涉及三种不同的转变。...GRU层使用与LSTM相同的原理工作,但它们有些简化,因此运行成本更低(尽管可能没有LSTM那么多的特征表示能力)。计算代价和特征表示能力之间的这种权衡在机器学习中随处可见。...双向RNN利用RNN的顺序敏感性:使用两个常规RNN,例如GRU和LSTM层,每个层在一个方向上处理输入序列(按时间顺序和反时间顺序),然后合并它们的特征表示。...这些内置于Keras循环网络层中,因此所要做的就是使用循环网络层的dropout和recurrent_dropout参数。 堆叠的RNN提供比单个RNN层更多的特征表示能力。

    3.8K10

    TensorFlow从1到2(十)带注意力机制的神经网络机器翻译

    机器不可能提前知道这一切,所以我们比较切实的方法,只能是增加一套权重逻辑,在不同的翻译处理中,对应不同的权重属性。...当然,注意力机制还包含上面示意性的表达式没有显示出来的一个重要操作:结合解码器的当前状态、和编码器输入内容之后的状态,在每一次翻译解码操作中更新注意力的权重值。 翻译模型 回到上面的编解码模型示意图。...实现call方法,这是主要的计算逻辑。模型接入到神经网络之后,训练逻辑和预测逻辑,都通过逐层调用call方法来完成计算。方法中可以使用keras中原有的网络模型和自己的计算通过组合来完成工作。...keras.layers.GRU的state输出其实就是隐藏层,平时这个参数我们是用不到的。...所以如果是在这个基础上做翻译系统,输出权重值到模型外部是不需要的。 为了匹配各个网络的不同维度和不同形状,注意力机制的计算逻辑和注意力权重经过了各种维度变形。

    75320

    R语言基于递归神经网络RNN的温度时间序列预测

    superassignment(状态。 生成器函数可以通过返回值NULL来指示完成 。...您将使用Chung等人开发的 GRU层。在2014年。GRU层使用与LSTM相同的原理工作,但是它们有所简化,因此运行起来更高效。在机器学习中到处都可以看到计算复杂度和效率之间的折衷。...Yarin Gal使用Keras进行了研究,并帮助将这种模型直接构建到Keras循环层中。...为了在Keras中将递归层堆叠在一起,所有中间层都应返回其完整的输出序列(3D张量),而不是最后一个时间步的输出。...通过双向处理序列,双向RNN可以捕获被单向RNN忽略的模式。 值得注意的是,本节中的RNN层已按时间顺序处理了序列。训练与本节第一个实验中使用相同的单GRU层网络,您将获得如下所示的结果。 ?

    1.2K20

    LSTM原理及生成藏头诗(Python)

    前馈神经网络是神经网络模型中最为常见的,信息从输入层开始输入,每层的神经元接收前一级输入,并输出到下一级,直至输出层。整个网络信息输入传输中无反馈(循环)。...改善措施:可以使用 ReLU 激活函数;门控RNN 如GRU、LSTM 以改善梯度消失。 梯度爆炸:网络层之间的梯度(值大于 1)重复相乘导致的指数级增长会产生梯度爆炸,导致模型无法有效学习。...2.3 输入门 下一步是通过输入门,决定我们将在状态中存储哪些新信息。..., output_dim=128), # 第一个LSTM层,返回序列作为下一层的输入 tf.keras.layers.LSTM(128, dropout=0.5, return_sequences...=True), # 第二个LSTM层,返回序列作为下一层的输入 tf.keras.layers.LSTM(128, dropout=0.5, return_sequences=True)

    1.2K30

    keras 基础入门整理

    第二部分 Keras中的神经网络层组件简介 1 简介 在对Keras的简单使用之后,本文对Keras提供的对各种层的抽象进行相对全面的概括,以对Keras有更全面的认识。...2 Keras对CNN的支持 keras.layers包中实现了与CNN相关的层模型,分别实现在convolutional和pooling模块中。...2 Keras对RNN的支持 Keras在layers包的recurrent模块中实现了RNN相关层模型的支持,并在wrapper模块中实现双向RNN的包装器。...return_sequences True返回整个序列,用于stack两个层,False返回输出序列的最后一个输出 go_backwards True,逆向处理输入序列并返回逆序后的序列 stateful...2 LSTM和GRU有效,优化GPU运行 input_dim 当使用该层为模型首层时,应指定该值 input_length 当输入序列的长度固定时,该参数为输入序列的长度。

    1.5K21
    领券