首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Scientific Reports | AutoImpute:基于自编码器的单细胞RNA测序数据的插补

    今天给大家介绍印度德里Indraprastha信息技术学院的Debarka Sengupta教授等人发表在Scientific Reports上的一篇文章 “AutoImpute: Autoencoder based imputation of single-cell RNA-seq data” 。单细胞RNA测序 (scRNA-seq) 技术的出现,使我们能够以单细胞分辨率测量数千个基因的表达水平。然而,单个细胞中起始RNA的数量不足会导致显著的“dropout”事件 (被错误判断为零的表达值),在表达矩阵中引入大量的零计数。为了解决这一问题,本文提出了一种基于自编码器的稀疏基因表达矩阵的插补方法。AutoImpute,它学习输入的scRNA-seq数据的固有分布,并相应地插补缺失值,对生物沉默基因 (真实表达的零值) 进行最小的修改。在真实的scRNA-seq数据集上进行测试时,AutoImpute在基于下采样数据的表达恢复、细胞聚类精度、方差稳定和细胞类型可分离性方面表现出竞争性。

    02

    Nucleic Acids Res. | scIGANs: 使用生成对抗网络进行scRNA-seq数据插补

    今天给大家介绍德克萨斯大学休斯顿健康与科学中心的徐云刚教授在Nucleic Acids Research上发表的文章 “scIGANs: single-cell RNA-seq imputation using generative adversarial networks”。单细胞测序 (scRNA-seq)可以高通量的表示单个细胞表达谱,但是却会受到很多噪声的影响,“dropout”事件就是其中之一。“dropout”指的是,单细胞测序数据中一些基因的表达值会因为技术等原因被错误的检测为0,而不是真实的表达为0。本文提出了一种基于生成对抗网络 (GAN) 的插补值方法 (scIGANs),来优化基因的表达,该网络使用网络生成细胞而不是使用原始矩阵中观察到的细胞,以此来平衡主要细胞群和稀有细胞群之间的性能。此外,文章利用模拟的以及真实的数据集进行了许多的分析实验,证明了scIGANs对插补值很有效,并适用于各种规模的数据集。

    03
    领券