首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NMF(矩阵分解)算法

NMF,矩阵分解,它的目标很明确,就是将大矩阵分解成两个小矩阵,使得这两个小矩阵相乘后能够还原到大矩阵。而非表示分解的矩阵都不包含负值。...这些方法的共同特点是,因子W和H中的元素可为正或,即使输入的初始矩阵元素是全正的,传统的秩削减算法也不能保证原始数据的性。...因此,探索矩阵的分解方法一直是很有意义的研究问题,正是如此,Lee和Seung两位科学家的NMF方法才得到人们的如此关注。 NMF通过寻找低秩,分解那些都为非负值的矩阵。...这在现实的应用中有很多例子,如数字图像中的像素一般为负数,文本分析中的单词统计也总是非负数,股票价格也总是正数等等。研究指出,矩阵分解是个NP问题,可以划为优化问题用迭代方法交替求解U和V。...NMF算法提供了基于简单迭代的求解U,V的方法,求解方法具有收敛速度快、左右矩阵存储空间小的特点,它能将高维的数据矩阵降维处理,适合处理大规模数据。

2.5K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    规则浮点数和规则浮点数

    已有多位博主撰写过关于规则浮点数(Denormalized Number)和规则浮点数之间的区别,这里首推卢钧轶的你应该知道的浮点数基础知识。...在写的过程中,当我将浮点数当作均匀量化时,却发现这个过程并不那么顺利,或许我应该单独的说明关于浮点数的相关内容,因此本文作为量化、数据类型、上溢和下溢的补充,旨在阐明 浮点数到底是如何对实数域进行均匀量化的...浮点数均匀量化 先给出一个示意图,这里将(0,4)区间为了若干段,每段之间的数分配一个一样的值,这就是量化。而每段的长度是不同的,这种量化方式是非均匀的。...譬如,若不引入规则浮点数,任何小于 ? 的数将会下溢为0,而引入不规则浮点数后,小于 ? 的数才会下溢为0 。 3....规则浮点数的问题 规则浮点数的表示能力依旧是有限的,同时由于其与规则浮点数不相同的定义方式,会导致计算速率方面的问题,即 规则浮点数的计算速度慢于规则浮点数(一般而言)

    2.2K20

    推荐算法——矩阵分解(NMF)

    通常在用户对商品进行打分的过程中,打分是非的,这就要求: Wm×k⩾0 W_{m\times k}\geqslant 0 Hk×n⩾0 H_{k\times n}\geqslant 0 这便是非矩阵分解...二、矩阵分解 2.1、矩阵分解的形式化定义 上面简单介绍了矩阵分解的基本含义,简单来讲,矩阵分解是在矩阵分解的基础上对分解完成的矩阵加上的限制条件,即对于用户-商品矩阵Vm×nV_{...{k,j}\frac{\sum_{u}W_{u,k}V_{u,j}/\left ( WH \right )_{u,j})}{\sum_{v}W_{v,k}} 上述的乘法规则主要是为了在计算的过程中保证...,而基于梯度下降的方法中,加减运算无法保证,其实上述的乘法更新规则与基于梯度下降的算法是等价的,下面以平方距离为损失函数说明上述过程的等价性: 平方损失函数可以写成: l=∑i=1m∑j=1n[Vi...2.4、矩阵分解的实现 对于如下的矩阵: ? 通过矩阵分解,得到如下的两个矩阵: ? ? 对原始矩阵的还原为: ? 实现的代码 #!

    1.5K30

    【机器学习】NMF(矩阵分解)

    理论概述   NMF(Non-negative matrix factorization),即对于任意给定的一个矩阵V,其能够寻找到一个矩阵W和一个矩阵H,满足条件V=W*H,从而将一个的矩阵分解为左右两个矩阵的乘积...{1}{2} \sum_{i,j} (A_{ij} – {WH}_{ij})^2 21​∣∣A−WH∣∣Fro2​=21​i,j∑​(Aij​−WHij​)2 ​ α \alpha α为L1&L2正则化参数...,而\rho为L1正则化占总正则化项的比例。...l1_ratio=0., # 正则化参数 verbose=0, # 冗长模式 shuffle=False # 针对"cd solver...-------- V矩阵:400*4096 W矩阵:400*6 H矩阵:6*4096   下面是script运行结果: 写在篇后   NMF最早由科学家D.D.Lee和H.S.Seung提出的一种矩阵分解方法

    1.5K20

    学习笔记 | 矩阵分解(NMF)浅析

    关键字: 矩阵分解; NMF 1 背景说明 矩阵分解问题涉及的面很广很多,这里只通过一个例子简单理解它的概念和物理意义。...V,NMF算法能够寻找到一个矩阵W和一个矩阵H,使得 V=W*H 成立 ,从而将一个的矩阵分解为左右两个矩阵的乘积。...NMF本质上说是一种矩阵分解的方法,它的特点是可以将一个大的矩阵分解为两个小的矩阵,又因为分解后的矩阵也是非的,所以也可以继续分解。...原矩阵V对应原空间中的原数据,分解之后的两个矩阵W和H分别对应寻找得到的新基底和投影在新基底上的数值。...矩阵分解的关键是“”,即原数据和新基底都必须是非负数,或者说位于“第一象限”,这样原数据投影在新基底上的数值才自然也是非负数。

    3.5K30

    【技术分享】最小二乘

    spark中的正则化最小二乘法并不是wiki中介绍的NNLS的实现,而是做了相应的优化。它使用改进投影梯度法结合共轭梯度法来求解最小二乘。...,d^{(k)}$是k个A的共轭的零向量,则这个向量组线性无关。   ...,共轭梯度法中因子beta_k具有下列表达式   对于二次凸函数,共轭梯度法的计算步骤如下: 3 最小二乘法在spark中的具体实现 Spark ml中解决最小二乘可以选择两种方式,一种是非正则化最小二乘...我们分析的重点是非正则化最小二乘的实现,因为在某些情况下,方程组的解为负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其最小二乘解比方程的精确解更有意义。...最小二乘问题要求解的问题如下公式 其中ata是半正定矩阵。   在ml代码中,org.apache.spark.mllib.optimization.NNLS对象实现了最小二乘算法。

    3.8K30

    常用正则整理 C#

    [1-9]\d*$ //匹配整数   ^[1-9]\d*|0$ //匹配整数(正整数 + 0)   ^-[1-9]\d*|0$ //匹配正整数(整数 + 0)   ^[1-9]\d*\....\d*[1-9]\d*$ //匹配正浮点数   ^-([1-9]\d*\.\d*|0\.\d*[1-9]\d*)$ //匹配浮点数   ^-?([1-9]\d*\.\d*|0\....\.0+|0)$ //匹配浮点数   ^[1-9]\d*\.\d*|0\.\d*[1-9]\d*|0?\.0+|0$ //匹配浮点数(正浮点数 + 0)   ^(-([1-9]\d*\....\.0+|0$ //匹配浮点数浮点数 + 0)   评注:处理大量数据时有用,具体应用时注意修正   匹配特定字符串:   ^[A-Za-z]+$ //匹配由26个英文字母组成的字符串   ^[...10个正则表达式测试站 RegExr(推荐) 基础知识可学习: http://baike.baidu.com/view/94238.htm http://www.cainiao8.com/web/js_note

    1.2K20

    js正则小结

    1,\ 斜杠用于转义,在js正则里,只有一些元字符(*,?,.等)和\本身需要转义,其他的不需要转义,如果其他的字符前面使用了\,可能会产生负面影响,比如\b,\t这些有特殊含义的转义。...此外,在js正则中,\还有一个用处在于使用new RegExp()形式创建正则对象时,比如new RegExp('a\*a'),其中*是乘以的意思,js引擎在解析该正则表达式字符串时,会消耗掉这个斜杠,...$&是一个特殊的变量,他代表是整个正则表达式匹配到的结果。也就是xy。 7 (?:x) 捕获分组,也就是()中的表达式捕获到分组不可在其他地方使用。'x'.replace(/(?...其余的都为单词字符。 /a\b/.test('a~b') => true,~被视为单词边界。/a\b/.test('ab') => false 12 \B 分单词边界,定义类似\b。...16 \S 空格符,定义为[^ \f\n\r\t\v\u00a0\u1680\u180e\u2000-\u200a\u2028\u2029\u202f\u205f\u3000\ufeff]。

    7.6K50
    领券