github地址:https://github.com/626626cdllp/echarts
甘特图(Gantt chart )又叫横道图、条状图(Bar chart)。它是以图示的方式通过活动列表和时间刻度形象地表示出任何特定项目的活动顺序与持续时间。它是在第一次世界大战时期发明的,以亨利·L·甘特先生的名字命名,他制定了一个完整地用条形图表进度的标志系统。由于甘特图形象简单,在简单、短期的项目中,甘特图都得到了最广泛的运用。
▽▼▽ 这种图表制作起来步骤并不复杂,主要是排版和图表元素格式化需要一些精加工。 ●●●●● 下面是制作步骤: ▷首先整理源数据如下: ▷为了防止横轴时间变迁过长造成标签被自动压缩倾斜,我把横坐标
今天跟大家分享think-cell chart系列的第16篇——树状分布图。 大家不要困惑于该图表的名称——树状分布图,其实它用的技巧非常简单(就是基本图表的组合表达),但是达到的效果却无比惊艳。 初
在过去的两年里,我们看到很多数据可视化基于新冠疫情开展研究工作。 这些可视化图表通过为我们提供有关特定城市/地区病例数的信息,帮助人们更快捷地理解疫情的发展情况。
在过去的两年里,我们看到很多数据可视化基于新冠疫情开展研究工作。这些可视化图表通过为我们提供有关特定城市/地区病例数的信息,帮助人们更快捷地理解疫情的发展情况。
代码已上传至github github代码地址:https://github.com/Miofly/mio.git <template> <view> <highcharts :options="chartOptions"></highcharts> </view> </template> bar类型 <script> // #ifdef H5 import {Chart} from 'highcharts-vue' export default {
本文中介绍的如何在pyecharts中配置全局组件,在后续的作图中会用到这些全局配置项。
今天要给大家分享的图表是旋风图! ▽▼▽ 其实我更喜欢叫这种图为蝴蝶图,因为图表两侧像一对翅膀一样,这种图表多用于某个事物的两种不同指标对比,如同一个年龄段两种产品的用户比例,同一种产品在接连两年的销
图表库千万个今天 HelloGitHub 给大家推荐个很有“特色”的图表库:一个手绘风格的 JS 图表库 —— Chart.xkcd,快收起你紧绷、严肃的面容让我们一起看看用手绘风格展示数据的效果。
小序:做数据可视化的时候,很多时候 UI 妹纸非得自己搞一套设计,可是明明前端图表库已经设定好是这样这样,她非得那样那样;所以,为难咱前端切图仔,必须得掌握点理论知识,才有可能和妹纸进一步的沟通,从而实现良性发展、共同进步。。。🐶 ---- 现如今的应用程序(设计、运营、迭代等)都高度依赖数据,由数据来驱动,我们对于 数据可视化 的需求也愈来愈高。 然而,时不时的,我们总是会遇到一些让人产生疑惑的可视化展示。所以,需要做点什么,来尽力规避这种“混乱”,能否梳理出一些简单的规则来改变这一点? 规则的魅力并不
<template> <view> <highcharts :options="chartOptions"></highcharts> </view> </template> <script> // #ifdef H5 import {Chart} from 'highcharts-vue' export default { components: { highcharts: Chart }, dat
打开origin后,点击菜单栏“文件”,选择“项目另存为”,给项目命名,并存到某个工作路径。
本文介绍一个在柱状图中创建动态目标线的技巧,如下图1所示,调节图表右侧的滚动条,可以看到左侧图表中用作目标线的红色直线作相应的调整。
今天跟大家分享的是think-cell chart系列的第7篇——堆积面积图。 堆积面积图是很常用的反应数据变动趋势和内部结构的图表类型,在excel中制作也很简单。 那么在think-cell c
需要了解的主要配置:series xAxis yAxis grid tooltip title legend colo
1、figure中的figsize(控制画布大小)、dpi(图像解析度),在figure上添加子图
这几天我们的一个学员在看到一幅论文中的一个统计图形(如下)后就@我,咨询这个图形到底怎么绘制?
今天跟大家分享的是另一种升级版的条形蝴蝶图! ▽▼▽ 之前曾出过一期关于蝴蝶图的教程,是一个关于Facebook、Twitter用户年龄分布的图表,今天之所以还要写蝴蝶图(升级版)的教程,是因为之前那
今天要分享的是think-cell chart系列的第五篇——堆积不等宽柱形图。 其实要问我为什么对think-cell chart这么情有独钟,现在给出答案—— 那就是有些用excel要用巨大工作量
Python有许多可视化工具,但是我主要讲解matplotlib(http://matplotlib.sourceforge.net)。此外,还可以利用诸如d3.js(http://d3js.org/)之类的工具为Web应用构建交互式图像。 matplotlib是一个用于创建出版质量图表的桌面绘图包(主要是2D方面)。该项目是由John Hunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口。如果结合使用一种GUI工具包(如IPython),matplotlib还具有诸如缩放
继上一篇文章为大家介绍了plt和ax绘图的区别后,这篇文章结合我自己的一些使用经历,为大家整理了Matplotlib中比较常用的一些组件设置。
使用示例 代码github地址:https://github.com/Miofly/mio <template> <view class="bg-black" style="width: 100%"> <scroll-view scroll-x> <chart :xData="xDataOne" :yData="yDataOne" backgroundColor="red"></chart> </scroll-view> <scroll-view scroll-x>
今天专门跟大家分享水晶易表中的一大类部件——单值部件。 单值部件使用频率很高,从它的名称就能猜个大概,它是用来表达单个指标的图表部件。 水晶易表中的单值部件大体上分为两类:输入型单值部件和输出型单值部件。 输入型的单值部件主要包含:滑块、进度条、刻度盘等,而输出型单值部件最典型的就是量表。 输入型的单值部件可以引用并识别excel中带公式的单元格,这样鼠标点击既可以实现动态控制。 量表的最大特色就是呈现简单易懂的指标数据效果,并且添加预警功能(警报)。 首先来看我们今天使用到的数据文件,是一家银行业的收
六西格玛中最有用的工具之一是根本原因分析 (RCA)。RCA 工具包中最有效的工具之一是帕累托图。在今天的实用指南中,天.行.健.带大家一起了解帕累托图可以为你做什么,以及如何/何时创建你自己的帕累托图作为 RCA 的一部分。
matplotlib是python里用于绘图的专用包,功能十分强大。下面介绍一些最基本的用法: 一、最基本的划线 先来一个简单的示例,代码如下,已经加了注释: import matplotlib.pyplot as plt import numpy as np # 先获取一个图表 plt.figure() # 设置图表的标题 plt.title("sale report") # 设置y轴的label标签 plt.ylabel("amount") # 设置x轴的label标签 plt.xlabel("
坐标轴是可视化图表中经常出现的一种图形,由一些刻度和线列段组成。D3中是没有现成的坐标轴,SVG中因而没有现成的图形元素,需要通过D3提供的其他组件来手动添加。下图是添加了坐标轴之后的效果图。
Python有很多优秀的可视化库,其中有名的像matplotlib、seaborn、plotly,可以绘制出各式绚丽的图表。
Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍QCharts折线图的常用方法及灵活运用。
GitHub:https://github.com/oxyplot/oxyplot
D3和Kendo UI只是在web应用程序中创建图表的两种方式,选项范围从简单地在屏幕上绘制图形到使用复杂的图表组件。D3和Kendo UI都很受欢迎,两者都能完成工作。然而,相似之处到此为止,这两种方法代表了非常不同的方法,具有非常不同的特性。
至于性能和运维成本,则由所选择的后端 DB 所决定。Metabase 本身不需要进行多复杂的维护,单个 DB 故障并不会引起 Metabase 崩溃。
ECharts是一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖矢量图形库 ZRender,提供直观,交互丰富,可高度个性化定制的数据可视化图表。
pyecharts 是 web 前端数据可视化库 Echarts 的一个 python 包装。实在说,我本人认认真真使用 pyecharts 的次数不超过5次。
1.由于红线和黄线数据、密度不同,所以需要使用双X轴和双Y轴来实现,通过 yAxis 的 interval 配置两个Y轴刻度线对齐,通过隐藏其中一个X轴达到视觉上共用一个X轴的效果。
选择错误的图表类型或默认使用最常见的数据可视化类型可能会混淆用户或导致数据误解。相同的数据集可以以多种方式表示,具体取决于用户希望看到的内容。始终从审查您的数据集和用户访谈开始。
SVG,指可缩放矢量图形(Scalable Vector Graphics),是用于描述二维矢量图形的一种图形格式,是由万维网联盟制定的开放标准。 SVG 使用 XML 格式来定义图形,除了 IE8 之前的版本外,绝大部分浏览器都支持 SVG,可将 SVG 文本直接嵌入 HTML 中显示。
上次提到了【数据可视化】Echarts最常用图表,其中还有一些图需要了解,这次来分享一下。
有什么疑问可以看这里:ECharts(基础模板详解) 这里直接是干货 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Title</title> <script src="https://cdn.staticfile.org/echarts/4.3.0/echarts.min.js"></script> </head> <body> <div id="chart" style="width:
JsChart是什么? JSChart能够在网页上生成图标,常用于统计信息,十分好用的一个JS组件。 使用JsChart 一。导入jscharts.js 二。编写jscharts.jsp测试页面 1.下载JScharts库 从官网下载JScharts库,我们使用的是压缩包里面的jscharts.js文件。它大约150KB。 使用JScharts库 在网页文件(如.html或.jsp)包含JScharts库。 <script type="text/javascript" src="js/jscharts.js
在Bootstrap框架中并没有提供完整的响应式图表功能,不过可以引入强大的、基于JavaScript的、完全开源的第三方图表插件,并基于Bootstrap框架良好的兼容性来整合这些第三方插件,最终设计出性能优越的响应式图表 为了实现基于Bootstrap框架的响应式图表的设计,引用了Bootstrap框架、jQuery框架和ECharts插件所需要的脚本文件、样式文件和资源文件,并自定义了相关样式文件和资源文件
Matplotlib是最受欢迎的二维图形库,但有时让你的图变得像你想象中好并不容易。
按照之前的计划,今天开始按照sparklines插件的图表分类标准开始跟大家分享详细的做法。 按照该插件在excel菜单中的顺序,先来看测量尺度(Scales)的两个图表类型:Standard、XY。
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
今天要跟大家分享的图表是细分市场矩阵! ▽▼▽ 只是名字听起来比较洋气,其实在制作方法上,还不外乎我们这几期所讲解的,数据错行组织及时间刻度的技巧! ●●●●● 本案例将给大家讲解两种思路来制作市场分
Echarts 折线图是图表中最常用的显示形式之一。使用 Echarts 做出基本的折线图很简单,但要是想把多组数据放在一张图表中,展示的漂亮又直观就不容易了。本文将带领大家从最基本的折线图,一步步完善,最终做出可读性很高的可视化图表。
本文内容适合入门及复习阅读,绘图所需的基本知识均有涉及,内容较多,由于篇幅限制,故分成两部分。
领取专属 10元无门槛券
手把手带您无忧上云