首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解Python中的算术乘法、数组乘法与矩阵乘法

    (1)算术乘法,整数、实数、复数、高精度实数之间的乘法。 ? (2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。 ?...数组与标量相乘,等价于乘法运算符或numpy.multiply()函数: ? 如果两个数组是长度相同的一维数组,计算结果为两个向量的内积: ?...如果两个数组是形状分别为(m,k)和(k,n)的二维数组,表示两个矩阵相乘,结果为(m,n)的二维数组,此时一般使用等价的矩阵乘法运算符@或者numpy的函数matmul(): ?...6)numpy矩阵与矩阵相乘时,运算符*和@功能相同,都表示线性代数里的矩阵乘法。 ? 7)连乘,计算所有数值相乘的结果,可以使用标准库函数math.prod(),Python 3.8之后支持。

    9.2K30

    优化 Solidity 中的百分数和比例运算

    译文出自:登链翻译计划[1] 译者:Johnathan[2] 校对: Tiny熊[3] 本文是 Solidity 中进行数学运算系列文章中的第三篇,这篇文章的主题是: 百分数和比例运算. ?...引言 金融数学最基础的就是百分数。 乘 的百分数是多少? 占 的百分比是多少?我们都知道答案: 乘 的百分数是 , 是 的百分之: 。...这就是 Solidity 中乘法溢出的机制。当乘法结果大于 256 位时,仅返回结果中最低的 256 位。...一个常见的示例是固定乘法的小数点位数为 18 位: 。 但是, 我们到底如何才能彻底避免假溢出? 思路: 使用位数更宽的数字. 假溢出问题的根源在于中间乘法结果超出 256 位。...结论 由于 Solidity 存在溢出问题,并且不支持分数;百分数和比例计算在 Solidity 中比较复杂。但是,可以使用各种数学技巧有效地解决这些问题。

    2.9K20

    矩阵乘法问题

    在这里就先来简单复习一下矩阵的相关知识: ---- 矩阵乘法 在矩阵乘法中,第一个矩阵的行数和第二个矩阵的列数必须是相同的。先来看一个简单的例子: ?...如果按照((AB)C)的顺序计算: 为计算AB(规模10×5),需要做10×100×5=5000次标量乘法,再与C相乘又需要做10×5×50=2500次标量乘法, 共需要7500次标量乘法。...如果按照(A(BC))的顺序计算: 为计算BC(规模100×50),需要做100×5×50=25000次标量乘法,再与A相乘又需要做10×100×50=50000次标量乘法,共需要75000次标量乘法...---- 动态规划法 设mLeft,Right是进行矩阵乘法ALeftALeft+1···ARight-1ARight所需要的乘法次数。为一致起见,mLeft,Left=0。...这里其实有更快地算法,但由于执行具体矩阵乘法的时间仍然很可能会比计算最有顺序的乘法的时间多得多,所以这个算法还是挺实用的。

    1.5K30
    领券