在JQuery的许多方法中,很多方法的参数可以传入一个JSON对象,比如Ajax方法的第二个参数。怎么将文本转化成JSON对象,需要注意以下问题:
很多人都建议jquery使用cdn加速的方式引入。当然,我不反对这么做。但是以我自己做项目的便利性,我还是习惯把jq放在本地使用。原因有以下几点:
文本分类是NLP领域的最常见工业应用之一,也是本人在过去的一年中接触到最多的NLP应用,本文「从工业的角度浅谈实际落地中文本分类的种种常见问题和优化方案」。
概述 文本分类是自然语言处理的重要应用,也可以说是最基础的应用。常见的文本分类应用有:新闻文本分类、信息检索、情感分析、意图判断等。本文主要针对文本分类的方法进行简单总结。 01 — 传统机器学习方法 分类问题一般的步骤可以分为特征提取、模型构建、算法寻优、交叉验证等。对于文本而言,如何进行特征提取是一个很重要也很有挑战性的问题。文本的特征是什么,如何量化为数学表达呢。 最开始的文本分类是基于规则的,特征就是关键词,例如足球在体育类出现的次数多,就将含有足球这一关键词的文本氛围体育。后来为了便于计算,通过
月之暗面科技有限公司(Moonshot AI)推出的AI模型「Kimi」是一款前沿的智能助手,具备多项先进特性和功能:
笔者主要方向是KBQA,深深体会到竞赛是学习一个新领域最好的方式,这些比赛总的来说都属于文本分类领域,因此最近打算一起总结一下。
作者:乐雨泉(yuquanle),湖南大学在读硕士,研究方向机器学习与自然语言处理。欢迎志同道合的朋友和我在公众号"AI 小白入门"一起交流学习。
论文标题:How to Fine-Tune BERT for Text Classification? 中文标题:如何微调 BERT 进行文本分类? 论文作者:复旦大学邱锡鹏老师课题组 实验代码
如果你存在以上疑惑,那本文章正是你需要的,下面将讲解几种app的类型、app与h5的通信原理、如何区分页面用原生开发还是h5开发。
之前整理了一份自己的Rank 4的解决方案,并开源了部分代码,原文链接:“达观杯”文本智能处理挑战赛,季军带你飞。这次分享一下朋友(NLP幼儿园)整理的"达观杯"文本智能处理挑战赛冠军的解决方案。
在NLP领域中,文本分类舆情分析等任务相较于文本抽取,和摘要等任务更容易获得大量标注数据。因此在文本分类领域中深度学习相较于传统方法更容易获得比较好的效果。 文本分类领域比较重要的的深度学习模型主要有FastText,TextCNN,HAN,DPCNN。
随着互联网和移动终端的发展,用户获取信息的需求越来越高——从以前单一地接受信息到现在主动获取自己感兴趣的资讯。搜狐新闻客户端的重要任务就是根据用户喜好向用户推荐他们感兴趣和关心的新闻,从而提升新闻点击率和阅读时长。
读者朋友们,多多笔记更新啦。最近事情比较杂乱(花式懒),所以停更了一段时间,不过也重构和基本完成了之前构思的Transformer教程,目前也正在内测,期待更好的她。
基于Transformer的大语言模型(LLM)具有很强的语言理解能力,但LLM一次能够读取的文本量仍然受到极大限制。
前段时间和朋友何从庆(AI算法之心)等队友一起组队参加了这个比赛,本来以为小比赛人少,没想到参加的人会有几千人。最后我们队伍取得季军(4st/3131),虽有些许遗憾,但是也很荣幸认识了更多的大佬。在此和队友整理总结了一波,放出答辩PPT以及开源了部分代码,希望对刚接触这个领域的小白新手能有些帮助~~~
欢迎大家来到预训练语言模型的专题系列分享,本篇推送是该专题系列的第三篇。在前两篇推送[萌芽时代],[风起云涌]中,我们分享了该领域的奠基文章以及声名鹊起却生不逢时的ELMo模型,本期我们带来的文章将会让大家了解文本分类的一些通用技巧,希望大家看完后炼丹技术都能更上一层楼!
人工智能在2018年继续强势发展,在运算智能和感知智能取得了很大的突破和优于人类的表现。
经常有粉丝私信问我,有没有合适的NLP项目适合入门,一直跑网上的开源demo感觉收获不大。 我邀请到了大厂NLP算法专家王老师。 王老师目前在BAT某厂负责算法架构方面的工作,有7年以上的算法工作经验。在金融、媒体、电商等领域有众多NLP落地项目实践。王老师提炼总结了自己多年工作经验,输出成6个小时的《新闻文本分类项目实战班》,非常适合刚入门NLP的同学上手。 这个项目实战最吸引我的有2点—— 01 数据集。基于头条新闻标题数据集,质量相对较高。 02 代码。提供企业级代码、遵循标准的面向对象范式。
本篇文章的内容是js清除浏览器缓存,在这里分享给大家,也可以给有需要的朋友做一下参考,大家一起来看一看吧
给你一个非零整数,让你求这个数的n次方,每次相乘的结果可以在后面使用,求至少需要多少次乘。如24:2*2=22(第一次乘),22*22=24(第二次乘),所以最少共2次;
本文介绍了四款流行的中文主题建模工具,它们分别是LDA,LSI,LSA和CopulaLDA。文章主要从原理,实现方法和应用场景等方面进行了详细的介绍。同时,文章还探讨了这四款工具在处理大数据集和高维稀疏数据时的优缺点。通过实验,作者比较了这四款工具在文本主题建模方面的性能,并总结了各种工具在实际应用中的适用场景。
之前做小程序开发时,需要实现对多行文本进行的折叠的效果(类型微信朋友圈)。主要交互有三点:
AI 科技评论按:本文首发于「人工智能THU」,作者钱桥,AI 科技评论获授权转载。
2、开始选项卡“样式”,点击所需样式,还可以放在上面看到样式效果,不合适可以继续换
我跟几位BAT老哥聊了下NLP全路径学习的事情,总结出以下内容,包含: 学习NLP需要具备哪些基础 NLP全路径各任务学习的项目 01 学习NLP需要具备的基础 01 机器学习 熟悉简单的机器学习模型。例如:逻辑回归、决策树、朴素贝叶斯、隐马尔科夫模型、K-Means、正则化方法等;有部分高级机器学习基础更好。例如:集成学习(随机森林、GBDT、XGB、Stacking等)、条件随机场CRF、贝叶斯网络、支持向量机、主题模型等。 02 深度学习 熟悉简单的神经网络基础。例如:神经元模型、多层感知机、反向传播
本文将从 Embedding 的本质、Embedding的原理、Embedding的应用三个方面,详细介绍Embedding(嵌入)。
随着社交媒体和移动信息流应用的发展,许多应用积累了海量多种类型的图文视频等多媒体内容。
在人工智能领域,大模型有时会产生一个被称为“幻觉问题”的现象。在对话过程中,大模型可能会答非所问,生成与用户输入不符、与先前生成的内容矛盾或与已知世界知识不符的内容。这就是所谓的“幻觉问题”。
textRNN指的是利用RNN循环神经网络解决文本分类问题,文本分类是自然语言处理的一个基本任务,试图推断出给定文本(句子、文档等)的标签或标签集合。
中文长文本分类、短句子分类、多标签分类、两句子相似度(Chinese Text Classification of Keras NLP, multi-label classify, or sentence classify, long or short),字词句向量嵌入层(embeddings)和网络层(graph)构建基类,FastText,TextCNN,CharCNN,TextRNN, RCNN, DCNN, DPCNN, VDCNN, CRNN, Bert, Xlnet, Albert, Attention, DeepMoji, HAN, 胶囊网络-CapsuleNet, Transformer-encode, Seq2seq, SWEM
本文来自社区作者 @mantch ,查看TA的更多动态,可在文末扫描社区名片进入。
为了整个界面美观,我们需要对提交和重置按钮美化一番,可是无论用什么CSS样式定义按钮,都很难达到满意的效果,只得用JS+图片的方式进行处理,下边我是总结出的三种方法:
知识经济的来临,知识管理在社会经济中的重要性也随之增加。文本分析的知识管理应用不仅包括企业单位,还包括一些科研管理部门,教育机构。企业在进行知识管理方面时,侧重面可能是企业客户,企业产品优化和市场方向优化方向。科研管理部门和教育机构的侧重点是科研相关结果的整理。文本分析平台的应用能够帮助企业和教育机构完善现有知识管理模式。
作者:maricoliao,腾讯 WXG 应用研究员 一、背景 随着自媒体时代的蓬勃发展,各类自媒体平台每天涌现出海量信息。微信作为最优质的自媒体平台,每天新发表文章数百万篇。汹涌而来的信息,极大地丰富了人们的精神和娱乐生活,但同时也存在着信息繁杂无序、内容同质化、质量参差不齐等问题,而用户最关心的是最新、最热的新闻热点事件。在此背景下,如何快速、准确地挖掘新闻热点内容,帮助用户更快、更好地了解热点事件,并追踪事件的来龙去脉和不同观点,是非常值得深入研究的问题。就此,我们针对微信生态特色,并结合外部媒
文本摘要:许多文本挖掘应用程序需要总结文本文档,以便对大型文档或某一主题的文档集合做出简要概述。
1、js配合传统css属性控制,可以使用setTimeout或者高级的requestAnimationFrame
上下文窗口长度达到了100万token,持平了谷歌同时推出的王炸Gemini 1.5,伯克利出品。
导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提供了不同的神经网络模型供大家学习和使用。本周推文目录如下: 周一:【点击率预估】 Wide&deep 点击率预估模型 周二:【文本分类】 基于DNN/CNN的情感分类 周三:【文本分类】 基于双层序列的文本分类模型 周四:【排序学习】 基于Pairwise和Listwise的排序学习 周五:【结构化语义模型】 深度结构化语义模型 文本分类是自然语言
【友情提示:舒克老湿意在为各位准备从事前端工程师岗位的小伙伴提供思路,所有代码仅供参考,切勿背题!!理解问题以及提高自己解决问题的能力最为重要!如果你有更好的解决思路,或者有什么问题,欢迎给舒克老湿留言,大家一同进步。】
Bert 给人们带来了大惊喜,不过转眼过去大约半年时间了,这半年来,陆续出现了与 Bert 相关的不少新工作。
在本次比赛中,采用了自己开发的一个训练框架,来统一处理TensorFlow和PyTorch的模型。在模型代码应用方面,主要基于中国香港科技大学开源的RNet和MnemonicReader做了相应修改。在比赛后期,还加入了一个基于BERT的模型,从而提升了一些集成的效果。
iframe 会阻塞主页面的 Onload 事件 搜索引擎的检索程序无法解读这种页面,不利于SEO
Bert 给人们带来了大惊喜,不过转眼过去大约半年时间了,这半年来,陆续出现了与Bert相关的不少新工作。
论文题目:Summarizing Chinese Medical Answer with Graph Convolution Networks and Question-focused Dual Attention
摘要:本篇主要分享了项目实践中的BERT文本分类优化策略和原理。首先是背景介绍及优化方向,其中优化方向主要分成从数据层面优化和模型层面优化;然后通过实验的方式重点分析了分类器优化策略和原理,主要从优化BERT预训练权重和分类器模型内部优化策略优化分类器效果;最后分享了一些关于BERT优化的思考和总结,包括分类层是否应该复杂化、长文本处理、增加新知识和灾难性遗忘问题的处理。优化永无止境,本篇内容也会持续更新,把项目实践中有价值的优化技巧通过文章及时固化,也希望更多的小伙伴一起分享文本分类优化技巧。
领取专属 10元无门槛券
手把手带您无忧上云