首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    线性结构------线性表(一)

    线性表的相关概念:   ------线性表(Linear List)由有限个类型相同的数据元素组成,除了第一个元素和最后一个元素外,其他元素都有唯一的前驱元素和唯一的后继元素。...------表中元素个数成为线性表的长度。 ------线性表没有元素时成为空表。 ------表起始位置成为表头,结束位置成为表尾。...基本操作集合: (1)void InitList(List *L):初始化一个空线性表表 (2)DataType FindByNum(int k, List L):查找线性表中第K位的元素,返回该元素...e):在线性表中第i个位置上插入元素e (5)void Delete(List L, int i):删除线性表中第i个位置上的元素 (6)int Lengh(List L):返回线性表长度 (7)void...PrintList(List L):打印线性线性表的实现: 一、顺序实现 #define MAXSIZE 20 typedef int DataType; typedef struct {

    44860

    线性回归:简单线性回归详解

    【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。...文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。...Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。...有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。...然后这个线性方程可以用于任何新的数据。也就是说,如果我们将学习时间作为输入,我们的模型应该以最小误差预测它们的分数。

    2K80

    线性代数01 线性的大脑

    后来读了更多的线性代数的内容,才发现,线性代数远不是一套奇奇怪怪的规定。它的内在逻辑很明确。只可惜大学时的教材,把最重要的一些核心概念,比如线性系统,放在了最后。...总结这些惨痛的经历,再加上最近的心得,我准备写一些线性代数的相关文章。 这一系列线性代数文章有三个目的: 概念直观化 为“数据科学”系列文章做准备,没有线性代数基础,没法深入统计和机器学习。...线性的思维方式是如此的普遍,以致于我们要多想一下,才能想出非线性的例子。下面是一个非线性的情况:超市更改积分系统,积分超过20的话,将获得双倍积分。...更重要在于,线性系统和矩阵是互通的。矩阵表示的是一个线性系统。一个线性系统也总可以表示一个矩阵(证明从略)。 绕了半天,矩阵 = 线性系统。 总结 线性代数的核心是线性系统的概念。...线性系统与矩阵的等同性,让线性代数后面的内容,转入到对矩阵的研究中。但核心要牢记。 线性系统的概念在生活中非常常见。人的思维很多时候也是线性的。思考生活中线性和非线性的例子。

    56030

    线性代数01 线性的大脑

    后来读了更多的线性代数的内容,才发现,线性代数远不是一套奇奇怪怪的规定。它的内在逻辑很明确。只可惜大学时的教材,把最重要的一些核心概念,比如线性系统,放在了最后。...总结这些惨痛的经历,再加上最近的心得,我准备写一些线性代数的相关文章。 这一系列线性代数文章有三个目的: 概念直观化 为“数据科学”系列文章做准备,没有线性代数基础,没法深入统计和机器学习。...线性的思维方式是如此的普遍,以致于我们要多想一下,才能想出非线性的例子。下面是一个非线性的情况:超市更改积分系统,积分超过20的话,将获得双倍积分。...更重要在于,线性系统和矩阵是互通的。矩阵表示的是一个线性系统。一个线性系统也总可以表示一个矩阵(证明从略)。 绕了半天,矩阵 = 线性系统。 总结 线性代数的核心是线性系统的概念。...线性系统与矩阵的等同性,让线性代数后面的内容,转入到对矩阵的研究中。但核心要牢记。 线性系统的概念在生活中非常常见。人的思维很多时候也是线性的。思考生活中线性和非线性的例子。

    84950

    线性回归,核技巧和线性

    在这篇文章中,我想展示一个有趣的结果:线性回归与无正则化的线性核ridge回归是等 价的。 这里实际上涉及到很多概念和技术,所以我们将逐一介绍,最后用它们来解释这个说法。 首先我们回顾经典的线性回归。...线性回归 经典的-普通最小二乘或OLS-线性回归是以下问题: Y是一个长度为n的向量,由线性模型的目标值组成 β是一个长度为m的向量:这是模型必须“学习”的未知数。 X是形状为n行m列的数据矩阵。...这就是核函数的诀窍:当计算解'时,注意到X '与其转置的乘积出现了,它实际上是所有点积的矩阵,它被称为核矩阵 线性核化和线性回归 最后,让我们看看这个陈述:在线性回归中使用线性核是无用的,因为它等同于标准线性回归...线性核通常用于支持向量机的上下文中,但我想知道它在线性回归中的表现。...最后,我证明了线性回归背景下的线性核实际上是无用的,它对应于简单的线性回归。 作者:Yoann Mocquin

    25330
    领券