首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视频压缩编码技术(H.264) ——编码器和解码器

    如上图所示,输入的帧或场Fn 以宏块为单位被编码器处理。首先,按帧内或帧间预测编码的方法进行处理。如果采用帧内预测编码,其预测值PRED(图中用P 表示)是由当前片中前面已编码的参考图像经运动补偿(MC)后得出,其中参考图像用F’n-1 表示。为了提高预测精度,从而提高压缩比,实际的参考图像可在过去或未来(指显示次序上)已编码解码重建和滤波的帧中进行选择。预测值PRED 和当前块相减后,产生一个残差块Dn,经块变换、量化后产生一组量化后的变换系数X,再经熵编码,与解码所需的一些边信息(如预测模式量化参数、运动矢量等)一起组成一个压缩后的码流,经NAL(网络自适应层)供传输和存储用。正如上述,为了提供进一步预测用的参考图像,编码器必须有重建图像的功能。因此必须使残差图像经反量化、反变换后得到的Dn’与预测值P 相加,得到uFn’(未经滤波的帧)。为了去除编码解码环路中产生的噪声,为了提高参考帧的图像质量,从而提高压缩图像性能,设置了一个环路滤波器,滤波后的输出Fn’即重建图像可用作参考图像。

    02

    【实战】GAN网络图像翻译机:图像复原、模糊变清晰、素描变彩图

    【新智元导读】本文介绍深度学习方法在图像翻译领域的应用,通过实现一个编码解码“图像翻译机”进行图像的清晰化处理,展示深度学习应用在图像翻译领域的效果。 近年来深度学习在图像处理、音频处理以及NLP领域取得了令人瞩目的成绩,特别在图像处理领域,深度学习已然成为主流方法。本文介绍深度学习方法在图像翻译领域的应用,通过实现一个编码解码“图像翻译机”进行图像的清晰化处理,展示深度学习应用在图像翻译领域的效果。此外,由于神经网络能够自动进行特征工程,同一个模型,如果我们使用不同场景下的数据进行训练,便可适应不同的场景

    03

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券