今天,我们来完成一个小玩意,将图片转成ASCII,最后使用Base64转换成灰色图。如,将图
已经 2022 年了,最近北京冬奥会的吉祥物冰墩墩很火,据说一墩难求,各种视频新闻应接不暇。程序员要有程序员的方式,今天我来用 Java 画一个由字符组成的冰墩墩送给大家,这篇文章记录字符图案的生成思路以及过程。
前言 论文链接:Combining Sketch and Tone for Pencil Drawing Production Matlab版本的代码,目前找到有两个: 1、https://github.com/fumin/pencil 2、https://github.com/candycat1992/PencilDrawing 效果看起来第二个要好,而且写的代码非常简洁。 我实现了Scala的版本(有一小部分用到了python),基于第一个Matlab版本的代码: https://github.com
对比度是指图像中不同区域之间的明暗差异程度,它是图像质量中的重要指标之一。除了颜色对比度之外,常见的对比度包括:
论文链接:Combining Sketch and Tone for Pencil Drawing Production
灰度图 ,Gray Scale Image 或是Grey Scale Image,又称灰阶图。把白色与黑色之间按对数关系分为若干等级,称为灰度。8位像素灰度分为256阶。用灰度表示的图像称作灰度图。除了常见的卫星图像、航空照片外,许多地球物理观测数据也以灰度表示。除了常见的卫星图像、航空照片外,许多地球物理观测数据也以灰度表示。以位场图像为例,把位场表示为灰度图,需要将位场观测值灰度量化,即将场的变化范围转换成256阶的灰度范围。由于位场的动态变化范围非常大,磁场可达数万个纳特,重力场也可能在数百个重力单位内变化,所以在显示为图像前通常需要对位场观测值进行拉伸或压缩。
Excel 基本操作会吧?上网搜索公式会吧?基本的数学理解能力有吧?OK,如果以上你都能做到,你也能上手计算机视觉项目了。
在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。
在分析图像问题时,由于环境和拍摄自身因素影响,使得在需要处的图像存在一定的问题,同时由于操作的要求,需要对图像进行一定的转换,所以,在处理图像之前,要对图像做出预处理,方便后期操作。
如:光照不够均匀,这会造成图像灰度过于集中; 由CCD(摄像头)获得图像时经A/D(数模)转换、线路传送时产生噪声污染,也会影响图像质量。
作者简介 本文来自鲍骞月的投稿,主要讲解图像处理基础,欢迎大家积极留言,提出你的疑问或者建议,与投稿小伙伴交流。 GitHub地址:https://github.com/shentibeitaokongle 干货正文 像素读写(RGB色彩空间) BufferedImage对象像素读写 获取像素二维数组并转换为一维数组(只针对于int类型的像素数据) 我们首先分析一下像素值的一些属性 像素在Java中存储方式 我们这里讨论的是ARGB/RGB通道类型的像素数据,而且是存储在int型数据中的情况。 在Java中
将彩色图片转换成黑白图片是自己拿到的第一个小任务。在全文开始之前给自己科普一个公式:
【导读】在当今互联网飞速发展的社会中,数量庞大的图像和视频充斥着我们的生活,让我们需要对图片进行检索、分类等操作时,利用人工手段显然是不现实的,于是,计算机视觉相关技术便应运而生,并且得到了快速的发展
图像增强能够有目的地强调图像地整体或是局部特征,将不清晰地图像变得更为清晰,或是强调某些感兴趣的特征,使其改善图像质量,加强图像判别和识别的效果。
低照度图像增强《An Integrated Neighborhood Dependent Approach for Nonlinear Enhancement of Color Images》-LiTao 2004
图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。
openCV 是使用 Mat 进行存储图片,记录各种像素信息。那么 Mat 中的像素是如何记录和获取的呢?
文章来源:https://www.88cto.com/article/XpuPdyTT
发布于 2017-11-04 14:51 更新于 2018-02-19 22:37
1、读入图像 使用imread()函数读入图像,由于m文件和图像放在同一目录下,故采用相对路径。
研究好玩又有用的技术第 004 期 在学习中发现快乐,在应用找到价值。这是我第四期分享图像技术应用的文章。 前三期欢迎阅读和分享:
在这一篇文章中,我们将会学习使用一下OpenCV中色彩空间的转换函数,我们这里说的色彩空间是说的使用多种颜色(通常指三种以上),来表示颜色的方法,像是我们平时所说的RGB,HSV,YUV,YCRCB,都是色彩空间模型。OpenCV也很方便的封装了很多的色彩空间函数。下面我们一起来实践一下(以下所有试验都根据下图完成,我截取的Windows自带的壁纸^_^)
其实将彩色图像转换成黑白图像原理非常的简单,实现起来也很容易。简单的说就是黑白图像的每个像素在RBG颜色中都具有相对应的值。用代码循环把图像中每一位RGB颜色转换成对应的黑白颜色就可以。 一、彩色转换黑白 C# Code var originalbmp = new Bitmap(Bitmap.FromFile(OFD.FileName)); // Load the image var newbmp = new Bitmap(Bitmap.FromFile(OFD.FileName)); // New ima
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用
LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikäinen, 和 D. Harwood [1][2]在1994年提出,由于LBP特征计算简单、效果较好,因此LBP特征在计算机视觉的许多领域都得到了广泛的应用,LBP特征比较出名的应用是用在人脸识别和目标检测中,在计算机视觉开源库Opencv中有使用LBP特征进行人脸识别的接口,也有用LBP特征训练目标检测分类器的方法,Opencv实现了LBP特征的计算,但没有提供一个单独的计算LBP特征的接口。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
作者:方阳, 转载请注明地址。 文件和代码可以在Github下载, markdown推荐用typora打开。 这篇文章是DIP的第二次作业,对图像增强技术进行综述,目录如下:
概述: 本文中小编将会跟大家分享一下OpenCV3.1.0中图像二值化算法OTSU的基本原理与源代码解析,最终还通过几行代码演示了一下如何使用OTSU算法API实现图像二值化。 一:基本原理 该方法是
首先在直方图的修整,有两种方法,一种是直方图均衡化,另外一种是直方图规定化,用起来的话第一种方法用的比较多,这里着重说一下第一种:直方图均衡化.
我们经常在B站上看到一些字符鬼畜视频,主要就是将一个视频转换成字符的样子展现出来。看起来是非常高端,但是实际实现起来确实非常简单,我们只需要接触opencv模块,就能很快的实现视频字符化。但是在此之前,我们先看看我们实现的效果是怎样的:
I 表示为获得的图片或者强度,或者说是待去雾的图片;J 表示场景光辉,或者说是要恢复的无雾的图片;A 表示地球大气中光的成分;t 表示非散射光到达相机部分的介质传输。而去雾的目的就是从 I 中恢复 J,A 和 t。
本文提出了一种获取高分辨率的三维视觉信息的方法,主要通过融合结构光视觉测量系统获得的三维信息和二维线扫描相机拍摄的高分辨率图像。
小票打印是零售商家的基础功能,在小票信息中,必然会存在一些相关店铺的信息。比如,logo 、店铺二维码等。对于商家来说,上传 logo 及店铺二维码时,基本都是彩图,但是小票打印机基本都是只支持黑白二值图打印。为了商家的服务体验,我们没有对商家上传的图片进行要求,商家可以根据实际情况上传自己的个性化图片,因此就需要我们对商家的图片进行二值图处理后进行打印。
虽然现在RGB是计算机视觉最基本的三原色组成结构,但是YCbCr也有非常重要的角色,甚至却之不可,理由如下:
直方图均衡化,可以对在不同的光线条件下拍摄不同的图片进行均衡化处理,使得这些图片具有大致相同的光照条件。因此,我们可以用在训练模型之前,对图像进行对预处理。
平时看代码会看到很多标点符号的字符拼起来的图案, 特别有趣, 像kong(一个高性能API网关), 除了源代码里面有图案, 命令行也藏了彩蛋:
灰度是描述灰度图像内容的最直接的视觉特征。它指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0,故黑白图像也称灰度图像。灰度图像矩阵元素的取值通常为[0,255],因此其数据类型一般为8位无符号整数,这就是人们通常所说的256级灰度。 灰度图:一个像素的灰度可以用8 位整数记录,也就是一个0~255的值。 深度图
今天来说说图像处理最基础知识,彩色图像与灰度图像转换,一般大家熟知的彩色图像转灰度的公式如下:
字符画是一系列字符的组合,我们可以把字符看作是比较大块的像素,一个字符能表现一种颜色(暂且这么理解吧),字符的种类越多,可以表现的颜色也越多,图片也会更有层次感。
图像彩色空间互转在图像处理中应用非常广泛,而且很多算法只对灰度图有效;另外,相比RGB,其他颜色空间(比如HSV、HSI)更具可分离性和可操作性,所以很多图像算法需要将图像从RGB转为其他颜色空间,所以图像彩色互转是十分重要和关键的。
哈喽,努力赚钱买生发水的大灰狼又来了,今天和大家分享一个简单又好玩的Python项目–“图片转字符画”。废话不多说,先上一个效果图迷惑一下众生。
参考文献:手把手教你学FPGA设计:基于大道至简的至简设计法 基于VIP_Board Big的FPGA入门进阶及图像处理算法开发教程-V3.0 整个系列文章如下:
图 (a): (从左到右) (1) 原始图片 (2) 使用高斯低通滤波器 (3) 使用高斯高通滤波器. 本文中的原始图像来自OpenCV Github示例。
我们知道图片除了最普通的彩色图,还有很多类型,比如素描,卡通,黑白等等,今天就介绍如何使用python和opencv来实现图片变素描图。
领取专属 10元无门槛券
手把手带您无忧上云