首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Iterative Shrinkage Thresholding Algorithm

    对于一个基本的线性逆问题: y = A x + w (1) {y}={A} {x}+{w}\tag{1} y=Ax+w(1) 其中 A ∈ R M × N A\in \mathbb{R}^{M\times N} A∈RM×N, y ∈ R M × 1 y\in \mathbb{R}^{M\times 1} y∈RM×1, w w w是未知噪声。(1)式可用最小二乘法来求解: x ^ L S = arg ⁡ mi ⁡ x n ∥ A x − y ∥ 2 2 (2) \hat{ {x}}_{L S}=\underset{ {x}}{\arg \operatorname{mi}} n\|{A} {x}-{y}\|_{2}^{2}\tag{2} x^LS​=xargmi​n∥Ax−y∥22​(2) 当 M = N M=N M=N 且 A A A 非奇异时,最小二乘法的解等价于 A − 1 y A^{-1}y A−1y。然而,在很多情况下, A A A 是病态的(ill-conditioned)。最小二乘是一种无偏估计方法,如果系统是病态的,则会导致其估计方差很大,因此最小二乘法不适用于求解病态方程。

    01

    高斯函数、高斯积分和正态分布

    正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。

    01

    支持向量机1--线性SVM用于分类原理

    在机器学习中,支持向量机(SVM,也叫支持向量网络),是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。是由Vapnik与同事(Boser等,1992;Guyon等,1993;Vapnik等,1997)在AT&T贝尔实验室开发。支持向量机是基于统计学习框架与由Chervonenkis(1974)和Vapnik(1982,1995)提出Vapnik–Chervonenkis理论上的最强大的预测方法之一。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

    04
    领券