选自arXiv 作者:David Silver等 机器之心编译 在 DeepMind 发表 Nature 论文介绍 AlphaGo Zero 之后,这家公司一直在寻求将这种强大算法泛化到其他任务中的可能性。昨天,AlphaGo 研究团队提出了 AlphaZero:一种可以从零开始,通过自我对弈强化学习在多种任务上达到超越人类水平的新算法。据称,新的算法经过不到 24 小时的训练后,可以在国际象棋和日本将棋上击败目前业内顶尖的计算机程序(这些程序早已超越人类世界冠军水平),也可以轻松击败训练 3 天时间的 A
作者:闻菲,刘小芹,常佩琦 【新智元导读】或许“智能爆炸”不会发生,但永远不要低估人工智能的发展。推出最强围棋AI AlphaGo Zero不到50天,DeepMind又一次超越了他们自己,也刷新了世人对人工智能的认知。12月5日,包括David Silver、Demis Hassabis等人在内的DeepMind团队发表论文,提出通用棋类AI AlphaZero,从零开始训练,除了基本规则没有任何其他知识,4小时击败最强国际象棋AI、2小时击败最强将棋AI,8小时击败李世石版AlphaGo,连最强围棋AI
不仅会下围棋,还自学成才横扫国际象棋和日本将棋的DeepMind AlphaZero,登上了最新一期《科学》杂志封面。
有人认为 AI 已经穷途末路,但一些绝顶聪明的人还在继续求索。 整理|黄楠、王玥 编辑|陈彩娴 近日,DeepMind 的创始人 Demis Hassabis 作客 Lex Fridman 的播客节目,谈了许多有趣的观点。 在访谈的一开头,Hassabis 就直言图灵测试已经过时,因为这是数十年提出来的一个基准,且图灵测试是根据人的行动与反应来作判断,这就容易出现类似前段时间谷歌一工程师称 AI 系统已有意识的“闹剧”:研究者与一个语言模型对话,将自己的感知映射在对模型的判断上,有失客观。 从2015年成立
2016年1月27日,《自然》刊文报道,谷歌公司开发人工智能程序alpha go(阿尔法围棋)以5:0的战绩完胜欧洲冠军,围棋职业二段樊麾。这是围棋人工智能首次战胜人类职业棋手。这在围棋界掀起了一个不大不小的波澜。之所以不大,是因为樊麾并不能代表人类最高水平。另外当时人们对ALPHA GO知之甚少,仅从棋谱上看,仍有不小的瑕疵。 2016年3月9日至3月15日,ALPHA GO在韩国首尔以4:1的战绩战胜人类顶尖棋手,韩国围棋职业棋手李世石九段。如果说战胜樊麾只是ALPHA GO的小试牛刀,人们对ALPHA
今天,中国围棋峰会进行到了第四天,AlphaGo挑战两种未曾体验过的比赛:人机配对赛和1v5的团体赛。 对于全新的比赛形式,棋圣聂卫平与AlphaGo之父哈萨比斯谈了这样的问题:如果让柯洁与AlphaGo搭档,对阵另外一台AlphaGo,究竟哪一方更厉害?参与人机配对赛的古力九段,则在赛前表示:要努力配合好AlphaGo才能有希望。 不幸的是,配对赛战到中局,跟古力合作的AlphaGo不愿再配合他,径直就要投降……但古力被逆转得实在不甘,断然拒绝投降。于是,赢棋无望AlphaGo开始乱走,不到8手棋,古
本文介绍了 AlphaZero 是如何利用深度强化学习解决围棋问题的。首先,AlphaZero 在无任何人类指导的情况下,通过自我对弈的方式学会下围棋。然后,它利用蒙特卡洛树搜索和深度神经网络来评估局面和选择策略。最后,通过与人类世界冠军和之前的围棋 AI 进行比较,AlphaZero 证明了其强大的围棋下棋能力。
AI 科技评论报道:今天 DeepMind 悄悄放出了一篇新论文,介绍了一个「AlphaZero」。一开始我们差点以为 DeepMind 也学会炒冷饭了,毕竟「从零开始学习」的 AlphaGo Zero 论文 10 月就发出来、大家已经讨论了许多遍了。 可定睛一看,这次的 AlphaZero 不是以前那个只会下围棋的人工智能了,它是通用的,国际象棋、日本象棋也会下,所以去掉了名字里表示围棋的「Go」;不仅如此,围棋还下得比上次的 AlphaGo Zero 还要好——柯洁在得知 AlphaGo Zero 之后
DeepMind的使命是证明AI不仅可以精通游戏,甚至可以在不知道规则的情况下做到这一点,最新的MuZero就实现了这一目标。
来源:新浪科技 作者:DeepTech 现代文明和科技已经使得我们的直觉不断退化。绝大多数人都没有意识到直觉的价值甚至没有意识到它的存在。作为复杂计算的基础,直觉是一种很容易被忽视的非常规方法。这种非常规性使得许多研究人员忽视它的潜力。 本文引用地址:http://www.eepw.com.cn/article/201712/373152.htm 我在人工智能领域所做的工作围绕“先进的认知机器将使用直觉作为其智力基础”这一想法。我们人类的思想为一般化的智力提供了充足的证据。人类本质上是直觉机器,而我们
(a)人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
本文将简单介绍这些算法的演进历程。未来,DeepMind 能否创造出这一系列的终极算法 OmegaZero 呢?
只用了不到4小时。 AlphaZero在去年底通过自我对弈,就完爆上一代围棋冠军程序AlphaGo,且没有采用任何的人类经验作训练数据(至少DeepMind坚持这么认为,嗯)。 昨天,GitHub有位大神@Zeta36用Keras造出来了国际象棋版本的AlphaZero,具体操作指南如下。 项目介绍 该项目用到的资源主要有: 去年10月19号DeepMind发表的论文《不靠人类经验知识,也能学会围棋游戏》 基于DeepMind的想法,GitHub用户@mokemokechicken所做的Reversi开发,
阅读本文前,请您先点击右上角的蓝色字体“优课屋”,再点击“关注”,这样您就可以继续订阅文章了!
近日,DeepMind一篇关于MuZero的论文“Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”在Nature发表。与AlphaZero相比,MuZero多了玩Atari的功能,这一突破进展引起科研人员的广泛关注。
【新智元导读】柯洁誓死战胜 AlphaGo 的豪言壮语言犹在耳, 20 年前第一个被计算机击败的人类冠军、国际象棋大师卡斯帕罗夫却表示,当年和深蓝相遇,既是他的幸运,也是他的诅咒。而20年后的今天,他丝毫不怀疑,每个职业都终将感受到 AI 带来的压力,否则就意味着人类停止发展,而人类劳动逐渐被人类的发明取代,这本身就是文明的历史。 “我会抱必胜心态、必死信念。我一定要击败阿尔法狗!”对于5月23日至27日在中国乌镇与围棋人工智能程序 AlphaGo (阿尔法狗)的对弈,目前世界排名第一的中国职业九段柯洁放
现如今,阿兰·图灵、马文·明斯基、约翰·麦卡锡这些来自西方国家的计算机科学和人工智能之父的姓名即便还不是家喻户晓,但至少在相关领域内人尽皆知。但是,很少有人知道苏联的铁幕之下也曾有过人工智能开发活动,尽管有时在这一领域中两种体制之间竞争的激烈程度要低于太空竞赛。本文通过主角 Andrey Leman 及其同事的人生故事,带你回首被世人遗忘的苏联 AI 往事。
关注风云之声 提升思维层次 解读科学,洞察本质 戳穿忽悠,粉碎谣言 导读 AlphaZero下国际象棋的时候,最革命性的一点是,它没有棋子的概念。无论是人类高手还是过去的顶级AI,再怎么也是以棋子实力评估为基础的,被吃了大子会心疼,在这个基础上再去进行“重视中央”之类的局面评估理论。而AlphaZero却完全对棋子没有概念,只要它认为未来整体局势好,弃子根本不叫事。这次Deepmind新论文应该给出结论了,“MCTS+神经网络”就是先进生产力的代表。 2017年12月6号,Deepmind扔出了一篇论文
今天,DeepMind的通用棋类算法,也是迄今最强的棋类AI——AlphaZero,经过同行评议,被顶级期刊 Science 以封面论文的形式,正式引入学界和公众的视野。
之前我写过篇博文,用象棋的思维趣说IT人的职业发展和钱途,发现象棋中的一些思维能应用到我们程序员平时的职业发展中。
为了庆祝 5 月 23 日 AlphaGo 中国赛,UAI 推荐一篇有趣且有深度的思考文章。本文译自 Michael Nielsen《why alphago is really such a big deal?》。 围棋程序刻画了人类直觉的元素,这是能够产生深远影响的进步。 1997 年,IBM 的 Deep Blue 系统击败了国际象棋世界冠军,Garry Kasparov。当时,这场胜利被广泛当做是人工智能发展中的里程碑。但是 Deep Blue 的技术仅仅对棋类有用,不可推广。计算机科学并没因此产生革
MuZero 算法在国际象棋、日本将棋、围棋和雅达利(Atari)游戏训练中的评估结果。横坐标表示训练步骤数量,纵坐标表示 Elo评分。黄色线代表 AlphaZero(在雅达利游戏中代表人类表现),蓝色线代表 MuZero。
在2017年,DeepMind推出了AlphaZero,自己学会了掌握国际象棋,日本将棋和Go,击败了世界冠军。DeepMind很高兴看到国际象棋界成员的回应,他们在和AlphaZero对战中看到了一种突破性的,高度动态和非传统的游戏风格,与之前的任何国际象棋游戏程序都不同。
传统意义上,游戏功能是Linux的弱项之一。近年来,由于Steam,GOG和其他将商业游戏平台的努力,这种情况有所改变,但是这些游戏通常不是开源的。当然,你可以在开源操作系统上玩游戏,但这对于开源纯粹主义者而言还不够。
萧箫 发自 凹非寺 量子位 | 公众号 QbitAI ChatGPT对战国际象棋AI,不到15秒就让人大受震撼。 开局ChatGPT执黑,国际象棋AI执白,双方有来有往,ChatGPT甚至主动出击,逼退对方的象(主教): 看起来会是一场激烈较量,直到ChatGPT突然嘎嘣一下,吃掉了自己的象! △奇怪的王车易位操作 事情到这里开始不对劲起来。 无论是棋盘上凭空出现的第9个黑兵(国际象棋黑白各只有8个兵): 还是突然把斜线上的象吃掉的马: △马本来只能走“日”字 简直不把规则放在眼里有木有! 这般
谷歌旗下人工智能公司DeepMind将围棋AI转战国际象棋和日本将棋领域——无须人类智慧加持,已胜券在握。 AlphaZero是由谷歌旗下DeepMind研发的通用棋类AI,以不到四小时的自学击败了世界最强的国际象棋程序。 重新改进的人工智能程序AlphaZero曾多次击败世界顶级围棋选手,并扩大到学习其他棋类项目。它从零开始学习国际象棋,仅用4小时,就在100盘比赛中击败了世界顶级国际象棋程序 Stockfish 8。 据在康奈尔大学图书馆的arXiv上发表的一篇未经同行评审的研究论文称,在这100场
此前不久,DeepMind 还推出了 AlphaFold,成功地根据基因序列预测出蛋白质的 3D 形状,将人工智能技术应用在了科学研究领域。
如果你已经在从事其中一种设计体验工作,你可能会想:“信息架构不是关于创建站点地图、线框图和网站导航菜单的吗?”确实如此——这些是信息架构设计的重要元素。但是信息架构不只是如此。
【导读】12月11日晚,大家期待已有的 AlphaGo教学工具正式上线了,DeepMind资深研究员黄士杰和DeepMind围棋大使樊麾在Facebook和其新浪微博差不多同一时间发布一条重要消息,谷
20世纪90年代后期,IBM深蓝(Deep Blue)研究了一系列的国际象棋算法,期望于打败当时的世界冠军加里•卡斯帕罗夫(Garry Kasparov)。
今年,Deepmind的“AlphaGo”在围棋领域的胜利让不少人了解到人工智能的强大。当时有人还认为没有人类棋手的经验,人工智能很难快速达到如今的成绩,但后来推出的AlphaGo Zero却是从0开始,自己学习围棋,又取得超越AlphaGo的成绩。如今Deepmind再次将这种强大的算法泛化,提出了AlphaZero:一种可以从零开始,在多种不同的任务中通过自我对弈,达到超越人类水平的新算法。这种算法可以通过24小时的对弈训练后,就可以在日本将棋和国际象棋领域击败目前业内顶尖的计算机程序(这些程序早就战胜
于是在网上引起了轩然大波。不少人认为,尼曼正是将棋局信息给了“肛珠型”超级计算机,利用它强大的AI能力,分析棋局从而帮助他击败了世界冠军。
大数据文摘出品 作者:Caleb 10月初的一场国际象棋比赛,让19岁的Hans Niemann一跃成名。 相信大家都还记得,这场比赛也让Niemann直接打破了多年位居世界第一Magnus Carlsen在此之前创下了53场“西部不败”的记录。 是的,在所有人看来,这本来是一场没有任何悬念的比赛。 随后,大家都开始怀疑Niemann在比赛中作弊。 毕竟这也不是他第一次了。Niemann也亲口承认了曾在两次比赛中有过作弊行为,他解释说,这是因为他十分想与顶级棋手比赛,于是将作弊视为一条捷径,这是“他一
距离IBM深蓝(Deep Blue)超级计算机在国际标准锦标赛规则下首次击败国际象棋世界冠军加里·卡斯帕罗夫(Gary Kasparov)已经有差不多20年了. 从那时起, 下象棋计算机的能力变得更加强大, 甚至运行在智能手机上的现代象棋引擎都几乎能让最强的人类毫无招架之力.
选自 Medium 机器之心编译 参与:路雪、 刘晓坤 近日,Jose Camacho Collados 在 Medium 上发表了一篇题为《Is AlphaZero really a scienti
最近,一则消息在程序员圈引起热议:Unix 之父 Ken Thompson 的旧密码被破解了!
距离IBM的深蓝超级计算机击败国际象棋世界冠军加里·卡斯帕罗夫(Gary Kasparov)已经快过去20年了。此后,计算机性能不断提升,但象棋引擎工作仍主要依靠“暴力破解”,通过穷举法,即遍历一切可能的移动方式,走出最好的一步棋。相比计算机,人类所拥有的技巧主要是评估国际象棋的盘面局势,缩小最优棋路的搜索范围。 2015年9月,来自伦敦帝国学院的Matthew Lai开发出一款名为“Giraffe”的人工智能机器,它能通过自学来判断象棋的摆放位置和下步棋该怎么走,它完全颠覆了传统的国际象棋引擎,下棋方法更
一个朋友咨询想自己做一个游戏平台,特别提到棋类的完善。在游戏概念发展上,要比目前的游戏平台全面,跟上时代潮流。比如拿国际象棋来说,要引入近几十年国际象棋发展中,产生的新概念。
点击标题下「大数据文摘」可快捷关注 “深蓝”在1997年的一场历史性的人机大战中战胜了人类国际象棋冠军卡斯帕罗夫。 图/Peter Morgan 1996年,许峰雄博士(右,现为微软亚洲研究院高级研究
DeepMind 和 Google Brain 研究人员以及前世界国际象棋冠军Vladimir Kramnik通过概念探索、行为分析和对其激活的检查,探索了人类知识是如何获得的,以及国际象棋概念如何在 AlphaZero 神经网络中表示。
谷歌AI研究员、Keras之父François Chollet近日发表一篇长达64页的论文,深入分析、阐述“智能的定义和测量”,引起AI研究社区大量关注。
2023国际棋联世界冠军赛4月7日开始在哈萨克斯坦阿斯塔纳举办,4月30日晚传来喜讯:中国棋手丁立人经过快棋加赛,最终以总比分9.5:8.5战胜俄罗斯棋手涅波姆尼亚奇,从而成为国际象棋历史上第17位男子个人世界冠军,这也是中国男队获得的第一个男子个人世界冠军。
允中 发自 凹非寺 量子位 出品 | 公众号 QbitAI 上个月,NIPS 2017召开期间,DeepMind创始人兼CEO哈萨比斯,在一个研讨会上发表了演讲。当时也是哈萨比斯首次公开解读Alpha
本文来自微软研究院AI头条(MSRAsia),AI 科技评论获授权转载,如需转载请联系微软研究院AI头条。
本文是雷锋网2015年9月份发出的文章,由知社学术圈王鹏编译,原标题《深度学习机器自学国际象棋72小时,媲美国际大师》,文章来源:MIT Technology Review。 谷歌旗下Deep MInd创始人宣布了谷歌在人工智能领域取得重要进展:开发出一款能够在围棋中击败职业选手的程序——AlphaGo,《Nature》杂志也以封面论文的形式, 介绍了AlphaGo击败欧洲围棋冠军樊麾,并将在 3 月和世界冠军李世乭对战。在此之前,有专家提到人工智能机器——“长颈鹿”,它可以通过自学从而像人类那样通过评
夏乙 发自 凹非寺 量子位 出品 | 公众号 QbitAI AlphaGo退隐,留下身后一众你追我赶的围棋AI。 比如说前些天在野狐上连斩多名职业选手的新版绝艺“符合预期”,又比如说多年研究国际象棋和
编译 | 阿司匹林 【AI 科技大本营按】2016 年 3 月,AlphaGo 击败世界顶尖职业围棋手李世石,在媒体上掀起巨大的波澜。一年多以后,AlphaGo 的升级版 AlphaGo Zero,在不采用任何人类棋谱作为训练数据的情况下,通过自我对弈,仅用 40 天就超越了所有旧版本。一时间,人们将所有最好的溢美之词纷纷送给了 AlphaGo Zero. 然而,AlphaGo Zero 真有那么伟大吗?来自斯坦福大学的计算机科学研究生 Andrey Kurenkov 从辩证的角度发表了自己对 Alp
机器学习国际象棋引擎Lc0上周末赢得了Chess.com计算机国际象棋锦标赛,成为历史上第一个获得此头衔的神经网络项目。
领取专属 10元无门槛券
手把手带您无忧上云