首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用pytorch实现鸢尾花的分类——BP神经网络

前文我们使用机器学习法实现了鸢尾花的分类, ? 本文介绍使用Pytorch中的交叉熵算法来实现分类问题。 构建出的模型类型大致为 ? 上图构建的输入层+2个隐藏层+输出层,共计4层结构的神经网络。...因此是4->layer1->layer2->3的三分类问题。考虑可以使用多种算法进行分析,本文先介绍使用BP神经网络进行分析。...先读取数据,并将数据分类: from sklearn import datasets dataset = datasets.load_iris() data = dataset['data'] iris_type..., 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 引入pytorch工具包 构建BP...网络 import torch.nn.functional as Fun # 定义BP神经网络 class Net(torch.nn.Module): def __init__(self, n_feature

12.3K31

Python BP神经网络实现

参考链接: 在Python中实现神经网络训练过程 Python_BP神经网络实现(向量化运算、鸢尾花分类测试)  简介  人工神经网络模型种类很多,其中根据网络内数据流向进行分类可以分为前馈网络、反馈网络和自组织网络...在此介绍和利用Python实现BP神经网络,BP神经网络是一种典型的前馈神经网络。  结构  BP神经网络分为三层分别是输入层、隐层和输出层,其中隐层的层数可以扩展,且每一层的神经元个数也可以增减。...原理  当我们使用BP神经网络来对数据进行分类或者预测的时候,每对有连接的神经元之间都有一个权重,记为w;同时还有偏移量,记为b。...Python实现思路  通过python实现BP神经网络,主要有以下几个步骤:  神经网络结构确定权重和偏移量参数初始化正向传播计算成本函数计算反向传播计算权重和偏移量参数更新  神经网络结构确定  该函数主要是为了获取输入量...最终获得的分类结果的准确率为98.3%。

1.3K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    bp神经网络及matlab实现_bp神经网络应用实例Matlab

    BP神经网络通俗教程(matlab实现方法) BP神经网络是什么 BP(Back-propagation,反向传播)神经网络是最传统的神经网络。...BP神经网络的作用也是如此。 BP神经网络这个名字由两部分组成,BP(反向传播)和神经网络。神经网络是说这种算法是模拟大脑神经元的工作机理,并有多层神经元构成的网络。...我们来看这个BP神经网络的示意图 其中蓝色的箭头是正向传播的过程,黄色的线条就是反向传播。 BP 神经网络的具体描述 BP神经网络的拓扑结构 上面这张图是BP神经网络的拓扑结构。...下面列出了几种常用的损失函数: 左边是解决分类问题时常用的损失函数,右边是解决回归问题时常用的损失函数。具体函数的公式我就不写了,你们具体要用的时候直接按照名字百度一下就好。...BP神经网络的基本运行原理就介绍完了。 神经网络的Matlab实现 Matlab自带神经网络的工具包,所以实现的这个环节还是非常简单的。我以Matlab2020为例演示一下。

    1.7K20

    Java分类

    锁的分类 从宏观上分为乐观锁与悲观锁 乐观锁 乐观锁是一种乐观思想,认为读多写少,遇到并发的可能性低,每次拿数据时候并不会上锁,因为认为不会被别人修改。...这个类的框架实现的。...而Synchronized是非公平锁,它没有通过AQS实现线程调度,无法成为公平锁。...互斥锁与读写锁 其实是独享锁与共享锁具体说法;互斥锁Java实现就是ReentrantLock,而读写锁Java实现是ReadWriteLock。 分段锁 实质上是一种锁的策略,并不是具体的锁。...对于ConcurrentHashMap它的并发实现在JDK 11之前是都过分段锁来实现的。当需要put元素时候,并不是对hashMap整个加锁,而是通过hashCode知道在那个分段,进行分段加锁。

    75510

    matlab实现BP算法,预测上证指数涨跌

    文章目录 整体介绍 实现结果 思路介绍 BP网络源代码 数据集在我网盘,有需要请联系博主 整体介绍 包含源码和数据集 实现结果 思路介绍 对于很多人人为,股票预测是一个很难的问题。...运用MATLAB神经网络工具箱,快速建立BP网络结构。那么你会问什么是神经网络,那么我下面就给大家简单的介绍一下: 人工神经网络就是模拟人思维的第二种方式。...虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。...BP网络源代码 %bp.m​ %处理数据 clear close all echo on %窗口响应执行过程 clc pause a=xlsread('learn.xls',1,'A2:...net.trainparam.goal=1e-3; %训练要求精度 net.trainparam.mc=0; %动量因子 [net,tr]=train(net ,xn,yn); %训练bp

    99451

    通过BP神经网络对于图像压缩的实现

    BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的时候同时研究了一下关于BP网络实现图像压缩的原理和过程...,并且是在MATLAB上进行了仿真的实验,结果发现设计的BP神经网络具有不错的泛化能力,对于用于图像压缩方面的效果还不错. 1:BP神经网络的模型的架构和训练的原理 BP神经网络是现在目前的发展的比较成熟的神经网络之一了...从理论上讲,编解码问题其实就可以归结为映射与优化的问题,从神经网络的方面来看无非就是实现了从输入到输出的一个非线性的映射关系,并且衡量性能的标准可以从并行处理能力是否高效,容错率是否合适,以及是否具有鲁棒性....分析图像压缩的基本原理其实和上述的BP神经网络的原理一样:如下图所示: ?.... 3:基于MATLAB的BP神经网络图像压缩过程的分析: 因为在MATLAB上应用BP神经网络对于数字图像进行压缩主要包括训练样本构造,仿真以及图像重建这三个环节. 1:训练样本的构建 因为我的机器的性能不够

    1.4K100

    机器学习算法(八):基于BP神经网络的乳腺癌的分类预测

    机器学习算法(八):基于BP神经网络的乳腺癌的分类预测 本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1.算法简介和应用...神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。...:模型预测 Part 2 基于BP神经网络的乳腺癌分类实践 Step1:库函数导入 Step2:数据读取/载入 Step3:数据信息简单查看与可视化 Step4:利用BP神经网络在乳腺癌数据上进行训练和预测...总结 BP神经网络具有以下优点: 1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。...3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类

    69500

    深度学习|反向传播算法(BP)原理推导及代码实现

    01 — 回顾 昨天,分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算,详细的过程,请参考:...深度学习|神经网络模型实现手写字分类求解思路 这其中,非常重要的一个步骤,便是利用反向传播(BP)算法求权重参数的梯度,偏置量的梯度。...下面根据以下几个问题展开BP算法: 什么是BP算法? 为什么叫做反向传播? 如何构思BP算法的切入点? 误差是如何传播开的? 如何求出权重参数的梯度和偏置量的梯度? 链式规则是怎么一回事?...一定要仔细理解这种上述公式的各个符号表达,它是理解以下对 BP 算法论述的前提。...3.5 反向传播代码 根据这四个公式,可以得出BP算法的代码,每个步骤将公式放到上面,方便查看。

    1.9K111

    OneR 算法实现分类

    例如,我们可以对收到的邮件进行分类,标注哪些是希望自己收到的,哪些是垃圾邮件,然后用这些数据训练分类模型,实现一个垃圾邮件过滤器,这样以后再收到邮件,就不用自己去确认它是不是垃圾邮件了,过滤器就能帮你搞定...02 实现 OneR 算法 OneR 算法的思路很简单,它根据已有的数据中,具有相同特征值的个体最可能属于哪个类别进行分类。...计算方法把它的各个取值的错误率相加,选取错误率最低的特征作为唯一的分类准则(OneR),用于接下来的分类。 现在,我们就来实现该算法。...我们来定义一个函数,实现这些操作。 函数如下,这次只用到三个参数,上面已经介绍过。...有了模型后就可以根据特征值对没有见过的数据进行分类。 我们经常需要一次对多条数据进行预测,为此实现了下面这个函数,通过遍历数据集中的每条数据来完成预测。

    1.3K10

    第9节:BP反向传播网络及其numpy实现

    文章目录 BP BP算法步骤 numpy复现 BP 对于输入信号,要先向前传播到隐含层,经过作用函数后,再把隐含神经元的输出信息传播到输出神经元,最后输出结果。...BP网络应用 函数逼近:用输入矢量和相应的输出矢量训练一个网络,逼近一个函数; 模式识别:用一个特定的输出矢量,将它与输入矢量联系起来 分类:把输入矢量以所定义的合适方式进行分类; 数据压缩:减少输出矢量维数...,以便于传输或存储 BP作用函数的要求: 必须处处可微,不能采用二值型的阈值函数{0,1}或符号函数{-1,+1}; BP使用S型函数或双曲正切函数或线性函数 S型函数具有非线性放大系数功能,它可以把输入从负无穷大到正无穷大的信号...BP算法步骤 (1)初始化: , ,pass=0, max, me; (2)随机地在[-0.3,0.3]范围内给全部权值和神经的阈值 赋初始值....[1,0,1,0,1,0,1,0,1] # -*- coding:utf-8 -*- # /usr/bin/python import numpy as np import math class BP

    71910
    领券