SQL审核工具 SQLE 1.2206.0-pre1 于今天发布。以下对新版本的 Release Notes 进行详细解读。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?关注公种浩:程序员追风,回复012获取一套500多页PDF总结的MySQL学习笔记。
磊哥,前几天在做项目demo的时候,使用雪花id或uuid作为Mysql主键,被老板怼了一顿!
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇文章我们就来分析这个问题,探讨一下内部的原因。
第5章 创建高性能的索引 并不是所有的存储引擎都用的B+数,B数能提高查询速度,但是B+树可以方便叶子节点的范围查询。 多列索引,不仅可以精确匹配最左列的数据,还能模糊匹配最左列前缀数据。 如果有某些列模糊查询了多列索引的其中一个,其后面的索引都不再生效。 哈希索引不支持范围查询也不支持排序。只支持精确查询。 innodb引擎有个特殊的功能叫“自适应哈希索引”,当innodb发现某些索引值被使用的非常频繁时,就会在内存中基于B-tree索引之上再建立一个哈希索引。 虽然存储引擎不支持哈希索引,但是我们可以自
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
来源:cnblogs.com/wyq178/p/12548864.html 前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。 一:mysql和程序实例 1.1:要说明这个问题,我们首先来建立三张表,分别是user_auto_key,user_uuid,user_ra
> 公众号:[Java小咖秀](https://t.1yb.co/jwkk),网站:[javaxks.com](https://www.javaxks.com)
回答:MySQL InnoDB 引擎底层数据结构是 B+ 树,所谓的索引其实就是一棵 B+ 树,一个表有多少个索引就会有多少颗 B+ 树,MySQL 中的数据都是按顺序保存在 B+ 树叶子节点上的。
在MySQL中设计表的时候,MySQL官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
在MySQL 8.0.23之前,表中所有的列都是可见的(如果您有权限的话)。现在可以指定一个不可见的列,它将对查询隐藏。如果显式引用,它可以被查到。
SQL审核工具 SQLE 1.2206.0 于今天发布。以下对新版本的 Release Notes 进行详细解读。
大家好上节介绍了汇总查询,继续介绍选择查询中的重复项查询和不匹配项查询,这两种查询都可以在查询向导中创建,本节主要介绍重复项查询。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/huyuyang6688/article/details/51428427
其实 UUID 和自增主键 ID 是常用于数据库主键的两种方式,各自具有独特的优缺点。
es-head插件插入查询以及条件查询 1.es-head插件页面介绍 页面详细介绍 2.es-head查询语句 2.1.查询索引中的全部数据 curl命令交互,采用GET请求 语法格式: cu
但是当数据量非常大时,仅靠数据库的自增主键是远远不够的。不仅是因为单表容量有限,数据库自增主键的性能也并不高。此外,某些数据库并不自带主键自增功能,需要业务代码来实现(比如Redis缓存)。
Hibernate的核心就是对象关系映射: 加载映射文件的两种方式: 第一种:<mapping resource="com/bie/lesson02/crud/po/employee.hbm.
" 又要开始新项目了,一顿操作猛如虎,梳理流程加画图。这不,开始对流程及表结构了。
创建好游戏场景后在游戏界面中可以添加图片,作为游戏中的元素。点击图片组件在画布中绘制一个主角飞机。点击图片后在画布中拖动鼠标绘制区域后将会弹出资源选择框:
UUID的方式能生成一串唯一随机32位长度数据,它是无序的一串数据,按照开放软件基金会(OSF)制定的标准计算,UUID的生成用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字。UUID的底层是由一组32位数的16进制数字构成,是故 UUID 理论上的总数为[1565060542.png] ,约等于[1565060554.png],也就是说若每纳秒产生1百万个 UUID,要花100亿年才会将所有 UUID 用完(100亿年啊,地球都没了),所以这足够我们的使用了,也能够保证唯一性。
数据库永远是应用最关键的一环,同时越到高并发阶段,数据库往往成为瓶颈,如果数据库表和索引不在一开始就进行良好的设计,则后期数据库横向扩展,分库分表都会遇到困难。
Robby的主题是默认主题。这不是最高兴的。这不是最简单的一个。这是正确的(对他来说)。
一位去阿里面试的小伙伴,在第一面就挂了。他跟我说是被数据库里面的几个问题难倒了,他说面试官问了事务隔离级别、MVCC、聚集索引/非聚集索引、B 树、B+树这些,都没回答好。
【iVX 初级工程师培训教程 10篇文拿证】01 了解 iVX 完成新年贺卡 【iVX 初级工程师培训教程 10篇文拿证】02 数值绑定及自适应网站制作 【iVX 初级工程师培训教程 10篇文拿证】03 事件及猜数字小游戏 【iVX 初级工程师培训教程 10篇文拿证】04 画布及我和 iVX 合照 【iVX 初级工程师培训教程 10篇文拿证】05 画布及飞机大战游戏制作 【iVX 初级工程师培训教程 10篇文拿证】06 数据库及服务 【iVX 初级工程师培训教程 10篇文拿证】07 08 新闻页制作 【iVX 初级工程师培训教程 10篇文拿证】09 聊天室制作
有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);
package utils; import java.util.Random; import java.util.UUID; public class KeyUtil { 生成唯一的主键 格式: 时间+随机数 public static synchronized String getUniqueKey(String str) { Random random = new Random(); Integer number = random.nextInt(9000
最近,大洋彼岸出现了一个名叫“Vectordash”的机器学习共享算力平台,用开发者自己的话讲,相当于一个GPU的Airbnb。
在阿里巴巴的java开发手册有这么一条强制规定:超过三个表禁止join,需要join的字段,数据类型保持绝对一致,多表关联查询时,要保证被关联的字段需要有索引。
group by 使用索引的原则几乎跟 order by 一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
1、自动增长字段: 自动增长型字段允许我们在向数据库添加数据时,不考虑主键的取值,记录插入后,数据库系统会自动为其分配一个值,确保绝对不会出现重复。这是我们设置主键的首选:
银行的面试跟互联网公司的面试还是有区别。银行除了技术面试之外,还会有结构化面试、无领导讨论的面试问题,这类形式主要是考察同学们的软实力,以及解决问题的思路。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/huyuyang6688/article/details/9385885
在分布式环境下,如何对某对象做唯一标识是个很常规的问题。本文讨论几种常见做法,供大家参考。
UUID(Universally Unique Identifier)是国际标准化组织(ISO)提出的一个概念。UUID是一个128比特的数值,这个数值可以通过一定的算法计算出来。为了提高效率,常用的UUID可缩短至16位比特。
ps:这个数据库优化问题在面试中还是比较常见的,阿里、腾讯、用友、京东、小红书等中大厂的面试都问过这个问题。
查阅随机数相关资料,特做整理 首先说一下java中产生随机数的几种方式 在j2se中我们可以使用Math.random()方法来产生一个随机数,这个产生的随机数是0-1之间的一个double,我们可以
功能:Dao层(持久层)框架,封装了JDBC。 思想:整合了ORM思想,以面向对象的思想操作数据库。
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。
在服务设计中,经常遇到的一个问题就是如何生成一个全局唯一的ID,例如订单号,流水号等。对于ID的要求主要有以下几点:
松哥最近工作中刚好用到这块内容,于是调研了市面上几种常见的全局 ID 生成策略,稍微做了一下对比,供小伙伴们参考。
通常我们会调研各种各样的生成策略,根据不同的业务,采取最合适的策略,下面我会讨论一下各种策略/算法,以及他们的一些优劣点。
领取专属 10元无门槛券
手把手带您无忧上云