首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Android开发笔记(五)日期的处理

    文本字符串的处理,数字格式是第一常见的,日期格式就是第二常见的了。日期的格式转换,主要是四种:Date转String、String转Date、Date转Calendar、Calendar转Date。   Date转String,先设置要转换的日期格式,再做格式化,代码如下: SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMddHHmmss");  //格式中间可以再插入/、-、:等日期时间分隔符 Date date = new Date(); String str = sdf.format(date); System.out.println("date="+date+", str="+str);   String转Date SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMddHHmmss"); String str = "20151124093336"; Date date = sdf.parse(str); System.out.println("date="+date+", str="+str);   Date转Calendar Calendar calendar = Calendar.getInstance(); Date date = new Date(); calendar.setTime(date); System.out.println("date="+date+", calendar="+calendar);   Calendar转Date Calendar calendar = Calendar.getInstance(); Date date = calendar.getTime(); System.out.println("date="+date+", calendar="+calendar);

    04

    第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-156 表达式计算

    这段时间我会把蓝桥杯官网上的所有非VIP题目都发布一遍,让大家方便去搜索,所有题目都会有几种语言的写法,帮助大家提供一个思路,当然,思路只是思路,千万别只看着答案就认为会了啊,这个方法基本上很难让你成长,成长是在思考的过程中找寻到自己的那个解题思路,并且首先肯定要依靠于题海战术来让自己的解题思维进行一定量的训练,如果没有这个量变到质变的过程你会发现对于相对需要思考的题目你解决的速度就会非常慢,这个思维过程甚至没有纸笔的绘制你根本无法在大脑中勾勒出来,所以我们前期学习的时候是学习别人的思路通过自己的方式转换思维变成自己的模式,说着听绕口,但是就是靠量来堆叠思维方式,刷题方案自主定义的话肯定就是从非常简单的开始,稍微对数据结构有一定的理解,暴力、二分法等等,一步步的成长,数据结构很多,一般也就几种啊,线性表、树、图、再就是其它了。顺序表与链表也就是线性表,当然栈,队列还有串都是属于线性表的,这个我就不在这里一一细分了,相对来说都要慢慢来一个个搞定的。蓝桥杯中对于大专来说相对是比较友好的,例如三分枚举、离散化,图,复杂数据结构还有统计都是不考的,我们找简单题刷个一两百,然后再进行中等题目的训练,当我们掌握深度搜索与广度搜索后再往动态规划上靠一靠,慢慢的就会掌握各种规律,有了规律就能大胆的长一些难度比较高的题目了,再次说明,刷题一定要循序渐进,千万别想着直接就能解决难题,那只是对自己进行劝退处理。加油,平常心,一步步前进。

    02

    Java中规模软件开发实训——简单计算器制作

    前言:在现代社会中,计算器是我们生活中不可或缺的工具之一。它们可以轻松地进行各种数值计算,从简单的加减乘除到复杂的科学运算,为我们提供了快捷准确的计算结果。但你是否曾想过,我们可以亲手打造一个属于自己的计算器应用程序,体验计算世界的奇妙之旅?本文将带领你进入计算器应用程序的开发领域。我们将使用Java编程语言和Swing图形界面库,从零开始构建一个简单但功能强大的计算器应用程序。无论你是计算机科学专业的学生,还是对编程和应用开发感兴趣的爱好者,这个实践项目都将为你提供一个宝贵的机会来深入了解应用程序开发的流程和技术。

    01

    前沿 | DeepMind 最新研究——神经算术逻辑单元,有必要看一下!

    众所周知,神经网络可以学习如何表示和处理数字式信息,但是如果在训练当中遇到超出可接受的数值范围,它归纳信息的能力很难保持在一个较好的水平。为了推广更加系统化的数值外推,我们提出了一种新的架构,它将数字式信息表示为线性激活函数,使用原始算术运算符进行运算,并由学习门控制。我们将此模块称为神经算术逻辑单元(NALU) ,类似于传统处理器中的算术逻辑单元。实验表明,增强的NALU 神经网络可以学习时间追踪,使用算术对数字式图像进行处理,将数字式信息转为实值标量,执行计算机代码以及获取图像中的目标个数。与传统的架构相比,我们在训练过程中不管在数值范围内还是外都可以更好的泛化,并且外推经常能超出训练数值范围的几个数量级之外。

    01
    领券