最近两年炒的比较火的就是数据分析,数据分析的直观呈现就需要进行数据可视化。大到产品的设计,小到细微功能的删减,慢慢都通过数据来说明它是否有存在的价值。未来的一切都将以数据来说明问题。而且也有数据表明,一线城市对数据分析岗位的需求也越来越大。所以掌握一两门的数据可视化框架以备不时之需!
目录 前言 bokeh简介及胡扯 bokeh-scala基本代码 我的封装 总结 一、前言 最近在使用spark集群以及geotrellis框架(相关文章见http://www.cnblogs.com/shoufengwei/p/5619419.html)进行分布式空间地理系统设计(暂且夸大称之为地理信息系统),虽说是空间地理信息系统但是也少不了数据可视化方面的操作,所以就想寻找一款支持大数据的可视化框架,网上查阅半天发现bokeh不错(其实是老板直接指明方向说用这款),恰好bokeh也有sc
Bokeh 是用于现代 Web 浏览器的交互式可视化库。它为我们提供了通用常见的可视化图表,外观优雅,简洁。并且能在流数据集上提供高性能的交互式图表。
一般的我们需要借用Python作图的话,首先会想到matplotlib,不过想要做出高大上的图的话,想实现更多的功能,还得找pyecharts和bokeh,今天我们不谈pyecharts和bokeh的具体实现,倒是将bokeh运行过程中可能出现的一个问题及其解决方法,给大家排排雷,日后如果有小伙伴掉坑里,也可以很方便的爬出来。
在数据科学和可视化领域,动态数据可视化是一项关键技术,能够帮助数据科学家和分析师更好地理解数据、发现趋势,并与观众交互。Python 中有许多强大的库用于数据可视化,其中 Bokeh 就是一款备受推崇的工具之一。Bokeh 提供了丰富的功能和灵活性,使得用户可以轻松创建动态、交互式的数据可视化。
这一工具名为Bokeh,官方介绍称,它能读取大型数据集或者流数据,以简单快速的方式为网页提供优美、高交互性能的图形。
之前咱们介绍过Pandas可视化图表的绘制《『数据可视化』一文掌握Pandas可视化图表》,不过它是依托于matplotlib,因此无法进行交互。但其实,在Pandas的0.25.0版本之后,提供了一些其他绘图后端,其中就有我们今天要演示的主角基于Bokeh!
我相信大家已经阅读了不少有关“机器学习”、“数据科学家”、“数据可视化”等话题的文章。有些人将数据科学称为 21 世纪最性感的工作。 Anaconda 的《2020 年数据科学状况报告》指出,21% 的时间用于数据可视化。使用工具或库来帮助我们完成讲故事的流程很重要。
引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 什么是Bokeh? Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了B
关于转载授权 大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 大数据文摘愿意为读者打造高质量【可视化讨论群】,措施如下 (1)群内定期组织分享 (2)确保群内分享者和学习者数量适合(1:1),有分享能力者不限名额,学习者数量少于分享者,按申请顺序排序。 点击文末“阅读原文”填表入群 编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pyda
随着数据科学和可视化的日益普及,实时数据可视化成为了许多应用程序中必不可少的一部分。Python语言以其丰富的数据科学生态系统而闻名,其中Bokeh库作为一种功能强大的可视化工具,为实时数据的可视化提供了优秀的支持。本文将介绍如何使用Bokeh库实现实时数据的可视化,并提供相关代码实例。
编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pydata.org ◆ ◆ ◆ 引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 ◆ ◆ ◆ 什么是Bokeh Bokeh是一个
这一工具名为 Bokeh,官方介绍称,它能读取大型数据集或者流数据,以简单快速的方式为网页提供优美、高交互性能的图形。
Bokeh是一款交互式可视化库,在浏览器上进行展示。 Bokeh可以通过Python(或其它语言),快速便捷地为大型流数据集提供优雅简洁的高性能交互式图表。
在数据科学和机器学习领域,数据可视化是理解数据、发现模式和进行数据交互的重要方式之一。Bokeh 是一个强大的 Python 可视化库,它提供了丰富的功能,使得在浏览器中呈现交互式图表和大规模数据集变得轻而易举。本文将介绍如何使用 Bokeh 实现大规模数据可视化的最佳实践,以及一些实用的代码示例。
小编近日在GitHub上发现一个火爆的Python交互式图形项目,名为Bokeh,通过读取大型数据集或者流数据,以简单快速的方式为网页提供优美、高交互性能的图形。现在,在github已经标星12300+,一度冲上GitHub趋势榜第一。(PS:“美观、实用”是不少用户给出的评价,甚至有人想让这份工具用起来更方便,尝试去汉化它的官方文档。)
尽管Matplotlib可以满足我们在Python中绘制图形时的所有需求,但有时使用它创建漂亮的图表有时会很耗时。好吧,有时候我们可能想向老板展示一些东西,以便拥有一些漂亮且互动的情节。 有很多出色的库可以做到这一点,Bokeh就是其中之一。但是,可能还需要一些时间来学习如何使用此类库。实际上,已经有人为我们解决了这个问题。这是一个名为的库Pandas-Bokeh,该库直接使用Pandas并使用Bokeh渲染数据。语法非常简单,我相信您可以立即开始使用它!
本文通过一个项目案例,详细的介绍了如何从 Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。本文共有两万字左右,属于纯干货分享,强烈推荐大家阅读后续内容。
用Python做数据分析离不开pandas,pnadas更多的承载着处理和变换数据的角色,pands中也内置了可视化的操作,但效果很糙。
🌊 作者主页:海拥 🌊 作者简介:🏆CSDN全栈领域优质创作者、🥇HDZ核心组成员、🥈蝉联C站周榜前十 上一篇文章我们介绍了 Seaborn,接下来让我们继续我们列表的第三个库。Bokeh 主要以其交互式图表可视化而闻名。Bokeh 使用 HTML 和 JavaScript 呈现其绘图,使用现代 Web 浏览器来呈现具有高级交互性的新颖图形的优雅、简洁构造。 安装 要安装此类型,请在终端中输入以下命令。 pip install bokeh 散点图 散点图中散景可以使用绘图模块的散射()方法被绘制。这里
Bokeh 是一个用于创建交互式和动态数据可视化的强大工具,它可以帮助你在 Python 中展示数据的变化趋势、模式和关联性。本文将介绍如何使用 Bokeh 库在 Python 中创建动态数据可视化,并提供代码示例以供参考。
上一篇利用交互式可视化分析了一下金州勇士队4年3冠的原因,其中数据处理部分使用了numpy和pandas,可视化部分使用的是Bokeh和Plotly,效果非常赞,链接如下:
一位球友在看过 抖音、视频号流行的 Bokeh 效果是怎么实现的? 这篇文章,刚好也在用里面的圆形 Bokeh 效果,但是却遇到了性能和锯齿问题,希望给出一些建议。
导读:本文通过一个项目案例,详细的介绍了如何从 Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。本文共有两万字左右,属于纯干货分享,强烈推荐大家认真读完并收藏!
在这一系列文章中,我通过在每个 Python 绘图库中制作相同的多条形绘图,来研究不同 Python 绘图库的特性。这次我重点介绍的是 Bokeh(读作 “BOE-kay”)。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 bokeh:0.12.7
Pandas一直被称为数据分析的利器,强大的数据处理、分析能力让我们感叹其牛X,效果杠杠的。可是,在这个看脸的时代我们更需要将数据可视化, 那咋办呢?
大家好,我是俊欣,今天来和大家分享一下“如何用Pandas来绘制交互式的图形”,希望读者朋友们读了之后能够有所收获。
导读:数据分析时经常用到的折线图,你真的懂了吗?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制折线图?本文逐一为你解答。
导读:什么是散点图?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制散点图?本文逐一为你解答。
最近要绘制伦敦区地图,查阅了很多资料后最终选择使用bokeh包以及伦敦区的geojson数据绘制。 bokeh是基于python的绘图工具,可以绘制各种类型的图表,支持geojson数据的读取及绘制地图。
时间序列(Time series)是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。时间序列法是一种定量预测方法,也称简单外延法,在统计学中作为一种常用的预测手段被广泛应用。
最近在查找可视化优质资源时发现一个优秀绘制统计图表的第三方库-iqplot,该库是基于Python语言的,其所提供的图表类型虽然不多,但在科研学术绘图任务中出现的频次较多,本期就其基本情况和可绘制的图表类型做一个简单介绍,主要内容如下:
数据可视化是数据科学和分析中不可或缺的一部分,而Python中的Matplotlib和Seaborn库为用户提供了强大的工具来创建各种可视化图表。本文将介绍如何使用这两个库进行数据可视化,并提供一些实用的代码示例和解析。
更新:上一篇文章《python 数据可视化利器》中,我写了 bokeh、pyecharts 的用法,但是有一个挺强大的库 plotly 没写,主要是我看到它的教程都是在 jupyter notebooks 中使用,说来也奇怪,硬是找不到如何本地使用(就是本地输出 html 文件),所以不敢写出来。现在已经找到方法了,这里我就在原文的基础上增加了 plotly 的部分教程。
导读:柱状图是当前应用最广泛的图表之一,你几乎每天都可以在电子产品上看到它。它有哪些分类?可以展示哪些数据关系?怎样用Python绘制?本文带你逐一了解。
柱状图是当前应用最广泛的图表之一,你几乎每天都可以在电子产品上看到它。它有哪些分类?可以展示哪些数据关系?怎样用Python绘制?本文带你逐一了解。
Python地图可视化库有大家熟知的pyecharts、plotly、folium,还有稍低调的bokeh、basemap、geopandas,也是地图可视化不可忽视的利器。
如果你是Python可视化的新手,一些流行的可视化库包括Matplotlib、Seaborn、Plotly、Bokeh、Altair和Folium,以及大量的库和例子可能会让你感到不知所措。
之前一直有小伙伴私信说让我多出些关于 Python 进行可视化绘制的教程,不想再学一门语言(R 语言)进行可视化绘制。怎么说呢?其实公众号关于 Python 进行可视化绘制的推文还是很多的,刚开始我也是坚持使用 Python 进行可视化绘制的,但也深知 Python 在这一块的不足(相信以后会越来越好的),再熟悉 R-ggplot2 绘图理念后,后面的可视化绘制都基本以 R 为主,Python 偶尔也会绘制。好在两者的绘图语法、所使用数据的结构都相差不大,使得两者可以兼顾,而基于前端交互式的可视化绘制,Python 可能比较灵活方便些,毕竟语法较为简单嘛,好了,不多说了,今天这篇推文,我们就介绍一下 Python 中常用且可灵活交互使用的的可视化绘制包- Bokeh,由于网上关于该包较多及官方介绍也较为详细,这里就在不再过多介绍,我们直接放出几副精美的可视化作品供大家欣赏:
之前一直有小伙伴私信说让我多出些关于Python 进行可视化绘制的教程,不想再学一门语言(R语言)进行可视化绘制。怎么说呢?其实公众号关于Python 进行可视化绘制的推文还是很多的,刚开始我也是坚持使用Python 进行可视化绘制的,但也深知Python 在这一块的不足(相信以后会越来越好的),再熟悉R-ggplot2绘图理念后,后面的可视化绘制都基本以R为主,Python偶尔也会绘制。好在两者的绘图语法、所使用数据的结构都相差不大,使得两者可以兼顾,而基于前端交互式的可视化绘制,Python可能比较灵活方便些,毕竟语法较为简单嘛,好了,不多说了,今天这篇推文,我们就介绍一下Python中常用且可灵活交互使用的的可视化绘制包- Bokeh,由于网上关于该包较多及官方介绍也较为详细,这里就在不再过多介绍,我们直接放出几副精美的可视化作品供大家欣赏:
Geotrellis系列文章链接地址http://www.cnblogs.com/shoufengwei/p/5619419.html 目录 前言 实现方案 总结 一、前言 之前有篇文章介绍了使用Bokeh-scala进行数据可视化(见http://www.cnblogs.com/shoufengwei/p/5722360.html),其实当时选择Bokeh的部分原因就是Bokeh支持大数据量的可视化,有点“大数据”的意思,总之这刚好能与Geotrellis结合起来进行一些地理信息方面的大数
今天来讲一讲在日常工作生活中我常用的几种绘制地图的方法,下面我将介绍下面这些可视化库的地图绘制方法,当然绘制漂亮的可视化地图还有很多优秀的类库,没有办法一一列举
领取专属 10元无门槛券
手把手带您无忧上云