Problem Description 给你N个整数,x1,x2…xn,任取两个整数组合得到|xi-xj|,(0 < i,j<=N,i!=j)。 现在请你计算第K大的组合数是哪个(一个组合数为第K大是指有K-1个不同的组合数小于它)。
给定一个整数数组 A,以及一个整数 target 作为目标值,返回满足 i < j < k 且 A[i] + A[j] + A[k] == target 的元组 i, j, k 的数量。
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m] 。请问 k[0]k[1]...k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
绪论:加法原理、乘法原理# 分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
1 . 组合分析方法使用 : 使用组合分析方法证明组合数时 , 先指定集合 , 指定元素 , 指定两个计数问题 , 公式两边是对同一个问题的计数 ;
组合分析方法使用 : 使用组合分析方法证明组合数时 , 先指定集合 , 指定元素 , 指定两个计数问题 , 公式两边是对同一个问题的计数 ;
你知道HashTable、ConcurrentHashMap中hash方法的实现以及原因吗?
分类计数原理:做一件事,有\(n\)类办法,在第\(1\)类办法中有\(m_1\)种不同的方法,在第\(2\)类办法中有\(m_2\)种不同的方法,…,在第\(n\)类办法中有\(m_n\)种不同的方法,那么完成这件事共有\(N=m_1+m_2+…+m_n\)种不同的方法。
根据算术基本定理又称唯一分解定理,对于任何一个合数, 我们都可以用几个质数的幂的乘积来表示。
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。 这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
是在重复度不受限制的情况下的选取结果 , 如果重复度受限制 , 就需要使用生成函数进行计算 ;
三色球是一个排列组合问题,三色球问题的大意如下:一个黑盒中放着3个红球、3个黄球和6个绿球,如果从其中取出8个球,那么取出的球中有多种颜色搭配呢?
这里就将 多重集的组合问题 , 转化成了 另外一个多重集的全排列问题 , 多重集全排列是有公式的 ;
题目描述 又到了丰收的季节,恰逢小易去牛牛的果园里游玩。 牛牛常说他对整个果园的每个地方都了如指掌,小易不太相信,所以他想考考牛牛。 在果园里有N堆苹果,每堆苹果的数量为ai,小易希望知道从左往右数第x个苹果是属于哪一堆的。 牛牛觉得这个问题太简单,所以希望你来替他回答。 输入描述: 第一行一个数n(1 <= n <= 105)。 第二行n个数ai(1 <= ai <= 1000),表示从左往右数第i堆有多少苹果 第三行一个数m(1 <= m <= 105),表示有m次询问。 第四行m个数qi,表示小易希望知道第qi个苹果属于哪一堆。 输出描述: m行,第i行输出第qi个苹果属于哪一堆。
转眼到了收获的季节,由于有TT的专业指导,Lele获得了大丰收。特别是水果,Lele一共种了N种水果,有苹果,梨子,香蕉,西瓜……不但味道好吃,样子更是好看。 于是,很多人们慕名而来,找Lele买水果。 甚至连大名鼎鼎的HDU ACM总教头 lcy 也来了。lcy抛出一打百元大钞,"我要买由M个水果组成的水果拼盘,不过我有个小小的要求,对于每种水果,个数上我有限制,既不能少于某个特定值,也不能大于某个特定值。而且我不要两份一样的拼盘。你随意搭配,你能组出多少种不同的方案,我就买多少份!" 现在就请你帮帮Lele,帮他算一算到底能够卖出多少份水果拼盘给lcy了。 注意,水果是以个为基本单位,不能够再分。对于两种方案,如果各种水果的数目都相同,则认为这两种方案是相同的。 最终Lele拿了这笔钱,又可以继续他的学业了~
假设有3种字符,k=2,那么种类上就是3取2,然后2种字符词频,求2的n次方相乘,最后累加。
短网址(Short URL),是在形式上比较短的网址,通过映射关系跳转到原有的长网址。
Given two integers n and k, return all possible combinations ofk numbers out of 1 ... n.
对有n个元素的集合S中的其中r个元素进行排列(n >= r)可以用如下几种方法来理解:
嘿!想象一下,有一个魔法口袋,里面装着 12 个球!已知其中 3 个是红的,3 个是白的,6 个是黑的。现在的任务是从这个神秘的口袋里任意抓出 8 个球,然后我们要搞清楚会有多少种有趣的搭配!
在进行排列组合计算以及概率计算时我们经常会遇到一些具有相同性质的问题。假设问题的样本空间Ω中一共有k种类型的元素α, β,γ... κ。每种类型的元素个数分别为Nα, Nβ,Nγ... Nκ。那么这些元素组成的重复元素的集合Ω为: Ω= { Nα * α, Nβ * β, Nγ * γ, ... Nκ * κ}
一道经典的题目。给一堆乱序的数,如果它们从小到大排好,求第 k 个是多少。假设排列的下标从 1 开始,而非 0 开始。
上面的cmd中,javac程序是一个Java编译器,它将文件Welcome.java编译成Welcome.class.java程序启动Java虚拟机。虚拟机执行编译器放在class文件中的字节码。
Goertzel算法由Gerald Goertzel在1958年提出,用于数字信号处理,是属于离散傅里叶变换的范畴,目的是从给定的采样中求出某一特定频率信号的能量,用于有效性的评价。
第1 步,求关系模式R < U , F > 的最小函数依赖集F 第2 步, 按照上面的定义, 分别计算出UL ,UR , UB (UL 表示仅在函数依赖集中各依赖关系式左边出现的属性的集合; UR 表示仅在函数依赖集中各依赖关系式右边出现的属性的集合;另记UB = U - UL - UR ) 第3 步,若UL ≠Φ,计算UL的闭包,若UL+ = U ,则UL 为R 的唯一的候选码,算法结束. 若UL+ ≠U ,转第4 步. 若UL = Φ,转第5 步. 第4 步,将UL 依次与UB 中的属性组合,利用上述的定义4 判断该组合属性是否是候选码; 找出所有的候选码后,算法结束. 第5 步,对UB 中的属性及属性组合利用上述的定义4 依次进行判断;找出所有的候选码后,算法结束.
你必须 恰好 按压开关 presses 次。每次按压,你都需要从 4 个开关中选出一个来执行按压操作。
公式P是指排列,从N个元素取M个进行排列。 公式C是指组合,从N个元素取M个进行组合,不进行排列。 N-元素的总个数 M参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1
: 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob。 Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏。 在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第i堆中有A[i]个石子。 每一次行动,Alice和Bob可以选择从一堆石子中取出任意数量的石子。至少取1颗,至多取出这一堆剩下的所有石子。 Alice和Bob轮流行动,取走最后一个石子的人获得胜利。 假设每一轮游戏
小编邀请您,先思考: 1 PCA算法的原理是什么? 2 PCA算法有什么应用? 主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法,PCA的思想是将n维特征映射到k维上(k
背包问题(Knapsack Problem, KP)是NP完全问题,也是一类重要 的组合优化问题 ,在工业 、经济 、通信、金融与计算机 等领域的资 源分配 、 资金预算 、 投资决策 、 装载问题 、 整数规划 、 分布式系统 与密码系统中具有重要的理论和应用价值。
来看一道简单的题目:今天星期日,那么 100 天以后星期几? 这个问题最笨的方法就是数数了。不过那样也是颇为费事,从余数方向考虑:一个礼拜 7 天,100 天等于 14 个礼拜周期还剩两天(100 = 14*7 + 2)。于是答案就是星期 2 了。
计数简单来说就是数数,计数法就是数数的方法,严谨一点来说就是拿一种东西和要数的东西一一对应,只要不漏掉和不重复,那么数量就是准确的。
动态规划是编程面试中的热门话题。一般来说,能够用动态规划求解的问题具有如下三个特点:
Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分。例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次OP运算,如果代码中出现 fori=1;i<=n; i++) for(j=i+1;j<=n; j++) OP; 那么做了n*(n-1)/2 次OP 操作。 现在给你已知有m层for循环操作,且每次for中变量的起始值是上一个变量的起始值+1(第一个变量的起始值是1),终止值都是一个输入的n,问最后OP有总共多少计算量。
自从发表了用于验证码图片识别的类(C#代码)后,不断有网友下载这个类后,问如何用于一些特定的验证码。总结一下网友们的提问,很多都是不会从复杂背景中提到干净的字符图片来,这主要就是一个去噪问题,即除去图片上的背景、干扰点、干扰线等信息。这当中要用到很多图像学数学算法,首先声明,本人不是学图像学的,以下方法理论说得不对,敬请多批评指正。 1、如何设前景/背景的分界值 UnCodebase类中有一个GetPicValidByValue( int dgGrayValue) 函数,可以得到前景的有效区域,常有
抽象一下就是从一个集合中取出任意元素,形成唯一的组合。如 [a,b,c] 可组合为 [a]、[b]、[c]、[ab]、[bc]、[ac]、[abc]。
2) 如果希望将一个数组的所有值拷贝到一个新的数组中去,就要使用Arrays类的copyOf方法:
中文分词算法是指将一个汉字序列切分成一个一个单独的词,与英文以空格作为天然的分隔符不同,中文字符在语义识别时,需要把数个字符组合成词,才能表达出真正的含义。分词算法是文本挖掘的基础,通常应用于自然语言处理、搜索引擎、智能推荐等领域。
上一篇「一文学会递归解题」一文颇受大家好评,各大号纷纷转载,让笔者颇感欣慰,不过笔者注意到后台有读者有如下反馈
给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
最近工作中碰到一个需求:我们的数据表有多个维度,任意多个维度组合后进行 group by 可能会产生一些”奇妙”的反应,由于不确定怎么组合,就需要将所有的组合都列出来进行尝试。
B - 多元Huffman编码问题 Description 在一个操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次至少选2 堆最多选k堆石子合并成新的一堆,合并的费用为新的一堆的石子数。试设计一个算法,计算出将n堆石子合并成一堆的最大总费用和最小总费用。 对于给定n堆石子,计算合并成一堆的最大总费用和最小总费用。
这种形式可以使用 不定方程非负整数解个数 的生成函数计算 , 是 带系数 , 带限制条件的情况 , 参考 : 组合数学】生成函数 ( 使用生成函数求解不定方程解个数 )
之前公众号分享过网友自行编写的WorldQuant 101因子源代码,大家有需要可以点击链接进行免费获取。
哈希表实现的map或者set查找的时间复杂度是O(1),哈希表优点是查找非常快,哈希表的缺点是失去了数据的顺序性,平衡二叉搜索树实现的map或set查找时间复杂度是O(logn),它保证了数据顺序性
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
你有 4 张写有 1 到 9 数字的牌。你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24。
领取专属 10元无门槛券
手把手带您无忧上云