概述:从本节开始,博文中会陆陆续续更新一些有关geotools相关的文章。本节讲述的是geotools的开胃菜,打开本地shp文件,并在窗口中显示。
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展
机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于Python、Java等的很多机器学习算法基本都被前人实现过很多次了。这些算法在网上可以找到很多,然而往往存在很多“脏”或者“乱”的开源代码。 在这样的背景下, InfoWorld近日公布了机器学习领域11个最受欢迎的开源项目,这11个开源项目大多与垃圾邮件过滤、人脸识别、推荐引擎相关。它们大多数基于现今最流行的语言以及平台,推广以及扩展了机器学习领域的很多重要算法。从中,用户不但可以找到LDA等主题
机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于Python、Java等的很多机器学习算法基本都被前人实现过很多次了。这些算法在网上可以找到很多,然而往往存在很多“脏”或者“乱”的开源代码。 在这样的背景下, InfoWorld近日公布了机器学习领域11个最受欢迎的开源项目,这11个开源项目大多与垃圾邮件过滤、人脸识别、推荐引擎相关。它们大多数基于现今最流行的语言以及平 台,推广以及扩展了机器学习领域的很多重要算法。从中,用户不但可以找到LDA等主
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。
原文标题:Java Machine Learning 作者:Jason Brownlee 翻译:杨金鸿 校对:丁楠雅 本文长度为3000字,建议阅读8分钟 本文介绍了主要的平台和开放源码的Java机器学习库。 你是一名希望开始或者正在学习机器学习的Java程序员吗? 利用机器学习编写程序是最佳的学习方式。你可以从头开始编写算法,但是利用现有的开源库,你可以取得更大的进步。 本文介绍了主要的平台和开放源码的机器学习库。你可以使用这些机器学习库。 环境 本节描述了用于机器学习的Java环境或工作域。它们提供
python这些年在编程语言排行榜上名次一直在上升,这个并不是偶然。python发展了几十年,中间好长一段时间无人问津,现在已经发展很成熟了,像新的语言go很多需要的包都没有,而python上各种包很多,用户开发不可能自己慢慢写包,直接调用包,快得多,有立杆见影的效果。
gitee开源地址 “https://gitee.com/admin_yu/yx-image-recognition 介绍 spring boot + maven 实现的车牌识别及训练系统 基于java语言的深度学习项目,在整个开源社区来说都相对较少;而基于java语言实现车牌识别EasyPR-Java项目,最后的更新已经是五年以前。 本人参考了EasyPR原版C++项目、以及fan-wenjie的EasyPR-Java项目;同时查阅了部分opencv官方4.0.1版本C++的源码,结合个人对java
gitee开源地址 https://gitee.com/admin_yu/yx-image-recognition 介绍 spring boot + maven 实现的车牌识别及训练系统 基于java语言的深度学习项目,在整个开源社区来说都相对较少;而基于java语言实现车牌识别EasyPR-Java项目,最后的更新已经是五年以前。 本人参考了EasyPR原版C++项目、以及fan-wenjie的EasyPR-Java项目;同时查阅了部分opencv官方4.0.1版本C++的源码,结合个人对java语言理解
liuruoze/EasyPR:https://gitee.com/easypr/EasyPR
嘿嘿,胖友给艿艿的 https://github.com/YunaiV/SpringBoot-Labs 仓库点个 Star 吧,具体 100000 只差 4000 个了,分分钟~
不管是数据挖掘、运维、建站还是爬虫都广泛运用。Python和其他编程语言相比,具有语法清晰、开发效率高的特点。
gitee开源地址 https://gitee.com/admin_yu/yx-image-recognition 介绍 spring boot + maven 实现的车牌识别及训练系统 基于java语言的深度学习项目,在整个开源社区来说都相对较少;而基于java语言实现车牌识别EasyPR-Java项目,最后的更新已经是五年以前。 本人参考了EasyPR原版C++项目、以及fan-wenjie的EasyPR-Java项目;同时查阅了部分opencv官方4.0.1版本C++的源码,结合个人对java语言理
如果你是机器学习的新手,你可能会想我应该学什么编程语言?不同的人使用不同的编程语言,但在这些流行的高级编程语言中,哪一种最适合机器学习? 机器学习是技术领域发展最快的领域之一,其发展速度呈指数级增长。
这个项目是良月柒在逛社区时发现的,刚看到它,思绪直接被拉回了几年前,当初有同学的毕设就是停车场管理系统,关键的功能——车牌识别,连硬件都整上了,一整套流程跑下来,pretty......
互联网上传输的数据,每时每刻都存在着被窃听和篡改的风险,SSL/TLS协议在保护用户数据机密性、完整性以及身份鉴别等方面发挥了重大作用。国际通用TLS协议并不包含中国国密局推荐使用的商用密码算法(即国密算法)套件,而绝大部分的编程语言原生TLS实现、第三方开源TLS实现大都不支持国密套件。随着国内安全合规、自主可控政策的指引,国密TLS的需求也越来越大,尤其在金融、政务领域已然成为刚需。与此同时,国密相关密码产品大多依托于硬件或者芯片,存在价格昂贵,部署成本高,部分中小企业用户难以承担的问题。国密软件产品存在以下问题也急需解决:
Python 由于本身的易用优势和强大的工具库储备,成为了在人工智能及其它相关科学领域中最常用的语言之一。尤其是在机器学习,已然是各大项目最偏爱的语言。
字节码混淆就是对类名、字段名、方法名进行替换,让其变得无意义,使其他人反编译后很难读懂,但并不影响逻辑。
非常喜欢读开源项目,每次读源码,都会觉得自己修炼某种武学功法,期待修炼完成后,可以大杀四方。
本文的主要内容编译自Blaz Zupan和Janez Demsar的一篇论文(Open-Source Tools for Data Mining)。我仅仅选择其中的要点和大家共享,同时加入一些个人的点评意见。
1. ACT-R:ACT-R由卡内基·梅隆大学开发,它既是人类认知理论的名称,又是基于该理论的软件的名称。该软件基于Lisp,提供详细的说明文档。 链接:http://act-r.psy.cmu.edu/software/ 2. Caffe:Caffe最初由加州大学伯克利分校的一名博士生创建,已成为一种大受欢迎的深度学习框架。它赖以成名的方面包括富有表现力的架构、可扩展代码和速度。 链接:http://caffe.berkeleyvision.org/ 3. CaffeOnSpark:该项目最初在雅虎开发
BouncyCastle是一款开源的密码包,其中包含了大量的密码算法,使用BouncyCastle的目的就是为了扩充算法支持
跳槽阿里基本上都分为两个阶段的提问。第一个阶段是主语言本身以及它的高级特性,第二个阶段是讲述自己的项目,并在中间穿插着问题。正文才是重点......
当涉及到训练计算机的行为而不需要明确的编程,存在大量的机器学习领域的工具。学术和工业界专业人士使用这些工具来构建从语音识别到MRI扫描中的癌症检测的许多应用。许多这些工具可以在网上免费获得。如果你有兴趣,我已经编译了这些(见本页底部)的排名,以及区分它们中一些重要功能的概述。具体来说,该工具所用的语言、每个工具的主页网站上的描述、对机器学习中特定范式的关注以及学术界和工业界的一些主要用途。
前面几篇文章,给大家总结了一些关于Golang中不错的开源框架、开源库等相关的内容。今天接着给分享一些不错的学习资源内容。同时也会分享一些优质的教学视频、高质量的电子书籍。想获取该文档、视频,可以通过下面的文章链接,进入公众号菜单,联系号主。
我会分为四个部分来谈论这个问题,由于LZ本身是Java出身,因此关于主语言的问题,都是与Java相关,其它语言的同学可以选择性忽略。此外,面试的时候一般面试官的问题都是环环相扣,逐渐深入的,这点在下面大家可以更明显的感受出来。
HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。
CPLEX 是IBM公司的一个优化引擎。软件IBM ILOG CPLEX Optimization Studio中自带该优化引擎。该软件具有执行速度快、其自带的语言简单易懂、并且与众多优化软件及语言兼容(与C++,JAVA,EXCEL,Matlab等都有接口),因此在西方国家应用十分广泛。由于在中国还刚刚全面推广不久,因此应用还不是很广,但是发展空间很大。
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
2017年企业界在AI技术上的开支将达到125亿美元,比2016年增长逾59.3%。这股强劲的增长势头可能会一直持续到2020年,到时收入有望达到460亿美元。开源软件的发展为AI的崛起发挥了巨大作用,市面上许多顶级的机器学习、深度学习、神经网络及其他AI软件采用开源许可证。本文从中遴选了50个最著名的开源AI项目: 1. ACT-R:ACT-R由卡内基·梅隆大学开发,它既是人类认知理论的名称,又是基于该理论的软件的名称。该软件基于Lisp,提供详细的说明文档。 链接:http://act-r.psy.
【编者按】机器学习似乎在一夜之间从默默无闻的小卒变成万众瞩目的焦点,关于机器学习的开源工具也越来越多,但是目前的挑战是,如何让对机器学习感兴趣的开发者和准备使用它的数据科学家们真正使用上它们,本文搜集了几种语言中常见且实用的开源机器学习工具,非常值得关注,本文来自 InfoWorld。 以下为原文: 经过几十年作为一门专业学科的发展后,机器学习似乎一夜之间作为万众瞩目的商业工具出现在我们面前。目前面临的挑战是如何让其具备实效,尤其是对开发者和正准备使用它的数据科学家们。 为此,我们搜集了一些最常见的且实用的
本文带你快速 get 每个精选Github项目的亮点和痛点,时刻紧跟 AI 前沿成果。 01 InsightFace #基于MXNet的人脸识别开源库 InsightFace 是 DeepInsig
TensorFlow™是一个开源软件库,最初由Google Brain Team的研究人员和工程师开发。(中文社区)
笔者寄语:与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下:
【AI科技大本营导读】在经过一年多的开发工作之后,LibRec 3.0 版本终于发布了。LibRec 是一个基于 Java 的开源算法工具库,覆盖了 70 余个各类型推荐算法,可以有效解决评分预测和物品推荐两大关键的推荐问题,目前已经在 GitHub 上收获了 1457 个 Star,612 个 Fork。
主要资源来自TensorFlow中文社区,翻译借助谷歌翻译,仅用于资源分享。 以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。 C 通用机器学习 推荐人 -一个产品推荐的Ç语言库,利用了协同过滤。 计算机视觉 CCV – C / Cached /核心计算机视觉库,是一个现代化的计算机视觉库。 VLFeat – VLFeat是开源的计算机视觉算法库,有Matlab工具箱。 ---- C ++ 计算机视觉 OpenCV – 最常用的视觉库。有C ++,C,Python以及Java接口),支持Win
编者按:机器学习是目前最炙手可热的技术之一,各大公司都在积极招聘相关的编程人才,来填补机器学习和深度学习代码编写的空缺。诚然,根据相关的招聘统计数据,Python 语言目前已经超越 Java 成为雇主最亟须的机器学习编程技能。但事实上,Java 在项目开发中仍然发挥着不可替代的作用,并且许多流行的机器学习框架本身就是由 Java 写成的。鉴于此前有关 Python 的参考资料已经很多,而鲜见 Java 的,因此,今天我们在这里推荐五个业内顶尖的 Java 机器学习库。原文载于 jaxenter.com
编者按:机器学习是目前最炙手可热的技术之一,各大公司都在积极招聘相关的编程人才,来填补机器学习和深度学习代码编写的空缺。诚然,根据相关的招聘统计数据,Python 语言目前已经超越 Java 成为雇主最亟须的机器学习编程技能。但事实上,Java 在项目开发中仍然发挥着不可替代的作用,并且许多流行的机器学习框架本身就是由 Java 写成的。鉴于此前有关 Python 的参考资料已经很多,而鲜见 Java;因此,今天我们在这里推荐五个业内顶尖的 Java 机器学习库。原文载于 jaxenter.com 网站,A
CDK是结构化学信息学和生物信息学的开源Java库。 该项目由Christoph Steinbeck,Egon Willighagen与Jmol和JChemPaint的开发人员Dan Gezelter于2000年发起。迄今为止,它是在科学界广泛支持下开展的最活跃的开源化学信息学项目之一。
中文分词是中文文本处理的基础步骤,也是中文人机自然语言交互的基础模块。由于中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词。
1、密码学的概述 1.1、密码学定义 密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 1.2、密码学的基本功能 (1) 机密性 仅有发送方和指定的接收方能够理解传输的报文内容。窃听者可以截取到加密了的报文,但不能还原出原来的信息,即不能得到报文内容。 (2) 鉴别 发送方和接收方都应该能证实通信过程所涉及的另一方, 通信的另一方确实具有他们所声称的身份。即第三者不能冒充跟你通信
MJDK 是基于 OpenJDK 构建的美团 JDK 发行版。本文主要介绍 MJDK 是如何在保障 java.util.zip.* API 及压缩格式兼容性的前提下,实现压缩/解压缩速率提升 5-10 倍的效果。希望相关的经验能够帮助到更多的技术同学。
作者 | Gunjan 译者 | Sambodhi 策划 | 凌敏 机器学习和编码是相辅相成的。如果没有编码,数据科学家就无法使用机器学习模型。因此,机器学习工程师至少要对一门编程语言有全面的了解。这篇文章深入介绍了适合机器学习的五种编程语言,并帮助您确定哪种语言最适合您。 1.Python Python 是一种流行的面向对象的语言,创建于 1989 年,并于 1991 年发布。Guido van Rossum 作为 Python 的创造者而广为人知。根据一份报告显示,Python 是最受欢迎的三大编程语言
6月11日,在2023开放原子全球开源峰会上,腾讯正式宣布将打磨多年的Java应用操作系统“OpenKona”捐赠给开放原子开源基金会,联合基金会以及数以百万计开发者,共建国产编译器基础软件,推动数字基础设施加速突破。
Elasticsearch 实战项目中势必会用到中文分词,而中文分词器的选型包含但不限于如下开源分词器:
本文主要介绍四个分词插件(ICTCLAS、IKAnalyzer、Ansj、Jcseg)和一种自己写算法实现的方式,以及一些词库的推荐。
领取专属 10元无门槛券
手把手带您无忧上云