启发:该方法很好理解,利用了矩阵的性质,实现了系数的自动变换与落位,在计算实现时可以考虑该方法减少迭代次数,提高运算效率。但是可能只适合线性多项式。
昨天所发布的迭代法称为正迭代法,用于求矩阵的主特征值,也就是指矩阵的所有特征值中最大的一个。其算法如下: 满足精度要求后停止迭代,xj是特征向量,λj是特征值。 Fortran代码如下: 以一个四阶矩
多项式求逆元,即已知多项式$A(x)$,我们需要找到一个多项式$A^{-1}(x)$
然后利用乘法分配律分别计算每项与 相乘,最后再相加(即 上的加法 XOR )。
已经有工具可以解很多最小二乘的模型参数了,但是几个专用的最小二乘方法最多支持一元函数的求解,难以计算多元函数最小二乘解,此时就可以用伪逆矩阵求解了。
1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。
此处所谓求逆运算,是指在模乘群里求逆。 第一节里提到互质的两个定义: (1)p,q两整数互质指p,q的最大公约数为1。 (2)p.q两整数互质指存在整数a,b,使得ap+bq=1。 只要明白了欧几里得算法,很容易就可以求出两整数的最大公约数,而这是一个小学时候就学习到的算法。这个算法有个可能让我们更熟悉的名字,叫辗转相除法。 我经常搞不清楚被除数和除数,不知道会不会有人和我一样。所以我要先在这里写明一下,防止混淆,一个除法,除号前的叫被除数,除号后的脚除数。 单次除法,X=m*Y
一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。 2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。 3、功能键: 功能键 快捷键 说明 方向上键 Ctrl+P 返回前一行输入 方向下键 Ctrl+N 返回下一行输入 方向左键 Ctrl+B
【导读】前一段时间,专知内容组推出了春节充电系列:李宏毅2017机器学习课程学习笔记,反响热烈,由此可见,大家对人工智能、机器学习的系列课程非常感兴趣,近期,专知内容组推出吴恩达老师的机器学习课程笔记系列,重温机器学习经典课程,希望大家会喜欢。 【重温经典】吴恩达机器学习课程学习笔记一:监督学习 【重温经典】吴恩达机器学习课程学习笔记二:无监督学习(unsupervised learning) 【重温经典】吴恩达机器学习课程学习笔记三:监督学习模型以及代价函数的介绍 【重温经典】吴恩达机器学习课程学习笔记四
在matlab中符号变量间也可进行算术运算,常用算术符号:+、-、*、.*、\、.\、/、./、^、.^、 '、 .',假设用符号变量A和B,其中A,B可以是单个符号变量也可以是有符号变量组成的符号矩阵。当A,B是矩阵时,运算规则按矩阵运算规则进行。
运算规则:按线性代数中矩阵乘法运算进行,即放在前面的矩阵的各行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。
一、数组方法 创建数组:arange()创建一维数组;array()创建一维或多维数组,其参数是类似于数组的对象,如列表等 反过来转换则可以使用numpy.ndarray.tolist()函数,如a.tolist() 创建数组:np.zeros((2,3)),或者np.ones((2,3)),参数是一个元组分别表示行数和列数 对应元素相乘,a * b,得到一个新的矩阵,形状要一致;但是允许a是向量而b是矩阵,a的列数必须等于b的列数,a与每个行向量对应元素相乘得到行向量。 + - / 与
一、数组方法 创建数组:arange()创建一维数组;array()创建一维或多维数组,其参数是类似于数组的对象,如列表等 反过来转换则可以使用numpy.ndarray.tolist()函数,如a.tolist() 创建数组:np.zeros((2,3)),或者np.ones((2,3)),参数是一个元组分别表示行数和列数 对应元素相乘,a * b,得到一个新的矩阵,形状要一致;但是允许a是向量而b是矩阵,a的列数必须等于b的列数,a与每个行向量对应元素相乘得到行向量。 + - / 与 * 的运
自然数的素数分解:每个自然数 n 都可分解为一系列素数,n = p1 · p2 · ... · pk
现在网上讲生成函数的教程大多都是从 开始,但是我不认为这样有助于大家理解生成函数的本质。我最开始学的时候也是在这里蒙了好久,直到看到了朱全民老师的课件,才真正的理解了生成函数的本质——处理排列组合问题的有利工具,而不是简单的\(\frac{1}{1-x}\)的指标代换。所以这篇文章,我打算从最基本的排列组合问题写起,最后慢慢扩展到 。内容会比较基础,高端玩家可以直接看鏼爷的集训队论文
文本首发知乎:https://zhuanlan.zhihu.com/p/87516875
# 来源:NumPy Essentials ch5 矩阵 import numpy as np ndArray = np.arange(9).reshape(3,3) # matrix 可以从 ndarray 直接构建 x = np.matrix(ndArray) # identity 用于构建单位矩阵 y = np.mat(np.identity(3)) x ''' matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
本文介绍基于MATLAB实现全局多项式插值法与逆距离加权法的空间插值的方法,并对不同插值方法结果加以对比分析。
█ 本文译自 Bill Gosper 在 Wolfram 社区发表的热点文章:Solving polynomials 多项式是由一组常数系数,a、b、c、……(数值)确定的。 TableForm[{a x + b, a x^2 + b x + c, a x^3 + b x^2 + c x + d, ". . ."}] // TraditionalForm 多项式求解问题就是找到一个值 x,使这些项的总和等于 0. 根据 x 的最高次数分别称为线性、二次、三次、四次、五次、六次、七次、八次......
根据文章内容,总结为:在容灾存储领域,Reed-Solomon码是一种经常使用的编码方式,其基本思想是将数据分割成若干份,对每一部分分别进行编码,并将编码后的结果合并起来。在容灾存储中,数据的丢失往往是不可避免的,因此,如何将数据在丢失后重新获取回来,是一个非常重要的问题。Reed-Solomon码是一种能够将数据在丢失后重新获取回来的编码方式,它具有纠错能力,能够在数据丢失后自动进行纠错,从而保证数据的正确性。在容灾存储中,Reed-Solomon码的应用非常广泛,其编码和解码速度都非常快,能够大大提高容灾存储系统的性能和可靠性。
在准备用python实现AES的时候,遇到了求伽罗华域下一个多项式的逆的问题。我发现,我不光把域的知识忘光了,别说多项式的逆了,我连如何用python实现求一个整数的逆都不知道。
大数据文摘作品 作者:TirthajyotiSarkar 编译:丁慧、katherine Hou、钱天培 说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的。 今天,让我们来谈谈线性回归。没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课。抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必! 在这篇文章中,文摘菌将介绍8种用Pyth
本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预测分析任务的起点。但我们不可夸大线性模型(快速且准确地)拟合大型数据集的重要性。如本文所示,在线
GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb
选自Medium 作者:Tirthajyoti Sarkar 机器之心编译 参与:晏奇、刘晓坤 本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预
如果直接使用线性回归的MSE会让逻辑回归的代价函数变成非凸函数,这样就会导致有非常多的局部最优值,导致梯度下降法失效。所以引入了交叉熵损失函数来替代线性回归的MSE(均方误差)
容斥原理 对容斥原理的描述 容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。 描述 容斥原理可以描述如下: 要计算几个集合并集的大小,我们要先将所有单个集合的
(1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。
R 语言在统计分析方面起了很大的作用,并且其开开放性更是促进了大量分析R包的出现。今天我们就不一一去列举相关的R包,而是总结一下R语言自带的统计学函数。 一、统计学数据的生成函数: norm 正态分布 f F分布 unif 均匀分布 cauchy 柯西分布 binom 二项分布 geom 几何分布 diag 对角阵 二、基础的运算函数 abs 绝对值 sqrt 平方根 exp e^x次方 log 自然对数 log2,log10 其他对数 sin,cos,tan 三角函数 sinh,cosh,tanh 双曲
matlab提供了一些处理多项式的专用函数,用户可以很方便地进行多项式的建立、多项式求值、乘法和除法运算,以及求多项式的倒数和微分、多项式的根、多项式的展开和拟合等。 一、多项式的建立 对于多项式,用多项式的系数按照降幂次序存放在向量中,顺序必须是从高到低进行排列。例如,多项式可以用系数向量来表示。多项式就转换为多项式系数向量问题,在多项式中缺少的幂次要用0来补齐。 通过ploy2sym()将向量转换为多项式 如果通过多项式的根建立,可以使用ploy()来创建多项式 二、多项式的求值与求根 1.多项式求值
3. 导数使用diff(f,v,n)对 f(v)=v^{t-1} 求 n 阶导 \frac{d^nf}{d^nv} ,n缺省时,默认为1,diff(f)默认求一阶导数。
会有很多的数据冗余,并且数据量太大,系统会无法承载,数据的传输也是一个很大的问题。因此,会对图像进行压缩,常用的图像压缩技术有 JPEG,本质上就是基变换,也就是使用更好的基来重现图像。
建议阅读时间:5-8min 类型:机器学习基础教程 适应人群:大数据、人工智能 一、The problem of overfitting What is overfitting?什么是过拟合? 我们依旧使用房价预测的例子,我们以房屋的Size作为自变量: (1)我们可以做线性回归,但是我们可以看到这不是一个好的模型,随着Size上升,价格会越来越平缓。,所以这个模型并没有很好地拟合模型,我们把这个问题成为欠拟合(underfitting),专业术语称为高偏差(high bias)。 (2)第二个模型我们
Problem Description 多项式的描述如下: 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + … 现在请你求出该多项式的前n项的和。
一.线性插值(一次插值) 已知函数f(x)在区间[xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一次函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。
十四、数值微积分 14.1 polyva() 多项式计算在理工科教学、科研中有着特殊地位和意义。matlab作为重要的工程计算软件也给出了相应的计算指令来完成这一工作。其中就有多项式求值polyval
输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
引用:https://zhuanlan.zhihu.com/p/100636577 https://zhuanlan.zhihu.com/p/99260386
一个集合 G 和该集合上的某种二元运算。群 G 中的两个元素通过某种二元运算可得到该群中的另一个元素。群要满足一些性质,比如交换律、结合律、元素存在逆等。
这一章介绍了曲线的表示, 用到了比较多的数学. 前半部分主要是介绍了曲线的性质和表示方式, 并介绍了多项式插值曲线, 后半部分主要介绍了包括贝塞尔曲线和B样条曲线在内的拟合曲线. 样条曲线的内容在样条曲线曲面有过一些简单的介绍, 这一章没有介绍曲面部分, 但是在曲线部分则进行了更加详细的介绍, 我也对这部分有了更好的理解.
OpenCV中KLT稀疏光流算法与FB稠密光流算法都是十年前的算法,没有反应出光流算法的最新进展,这个跟OpenCV其它模块相比,光流算法模块的更新明显滞后、OpenCV4发布终于把DIS光流算法包含到正式的发布版中。相对于FB光流基于多项式实现光流移动估算,DIS光流采用反向搜索与梯度下降寻求最优化来解决移动估算,不但降低了计算量、而且提升了精准度与实时性能。是一种可以实时运行的视频运动分析算法。
上一回,我讲了一下链表的定义和基本操作的实现;这一会我们来看一下链表相关的一个典型应用:一元多项式!一元多项式的定义
poly 函数将这些根重新转换为多项式系数。对向量执行运算时,poly 和 roots 为反函数,因此 poly(roots(p)) 返回 p(取决于舍入误差、排序和缩放)。
作者 | 蒋刚 审校 | 刘连响 ---- 今天向大家介绍下RSFEC的原理,它通过生成冗余数据来恢复丢失的信息,首先介绍下背景,之后重点介绍RSFEC如何计算冗余和恢复数据的,分为异或方式和矩阵方式,异或方式可以认为是矩阵方式的特殊形式,最后做下总结。 - 背景介绍 - RSFEC广泛应用于存储、通信、二维码等领域,比如RAID利用它生成冗余盘提升容错性,视频通话中利用它生成冗余数据对抗网络丢包,太空中远距离传输数据时也用到它,第三张图片是旅行者一号应用RSFEC将太空中拍摄的照片传回地
切比雪夫多项式 概述: 切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn 或 Un 代表 n 阶多项式。 切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。 基本性质: 对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。 并且当
其实网上已经有不少从数学原理的角度去解说Winograd[1,2,3,4,5,6,10]这个算法的文章了,为什么我还要写这篇文章。
引用:https://zhuanlan.zhihu.com/p/103167410
在实验模态分析中用 Matlab 实现离散化正交多项式算法 [C], 马永列; 陈章 位; 胡海清 4.在实验模态分析中用 Matlab 实现离散化正交多项式算法 [C], 马永列……
领取专属 10元无门槛券
手把手带您无忧上云