首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法练习(20)-平滑加权轮询算法

所有负载均衡的场景几乎都会用到这个算法:假设有2个服务器A、B,其中A的分配权重为80,B的分配权重为20,当有5个请求过来时,A希望分到4次,B希望分到1次。...于是就有了个这个算法,它的思路如下: 初始状态时,配置的权重为:{A:80, B:20},然后给每个服务器,加1个动态的当前权重(curWeight),默认为0,按以下步骤: 1、curWeight +...这个算法巧妙的地方在于,每一轮分配完成,所有服务器的动态权重都会归0,回到初始状态!另外1个优势在于,它能让所有权重的服务器,尽早分配到,而非等到高权重的服务器分配完,才轮到自己。...理解其中的原理后,用java代码来实现一把: 先定义一个服务器类: @Data @AllArgsConstructor @NoArgsConstructor public class ServerInfo...Integer weight; /** * 当前动态权重 */ public Integer curWeight; } 然后开干: 1 /** 2 * 平滑加权轮询算法

88751

优化算法之指数移动加权平均

加权平均数:在实际问题中,一组数据里的各个数据的重要程度未必相同。因而,在计算这组数据的时候,往往给每个数据一个权。加权平均数一般来说,如果在 ? 个数中, ? 出现的 ? 次, ? 出现 ?...算术平均数是加权平均数的一种特殊情况(他特殊在各项的权相等为1);在实际问题中,各项权不相等的时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数。...加权移动平均法 加权移动平均给固定跨越期限内的每个变量值以相等的权重。其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。除了以 ?...在运用加权平均时,权重的选择是一个应该注意的问题,经验法和试算法使选择权重最简单的方法。一般而言,最近期的数据最能预测未来的情况。因而权重应大一些。...▲计算加权移动平均法 ? ▲计算加权移动平均法 ? a 指 数 加 权 移 动 平 均 说了这么多那什么是指数加权移动平均呢?其实他也是加权移动平均的一种改进。

2.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习优化算法中指数加权平均

    什么是指数加权平均 在深度学习优化算法(如Momentum、RMSprop、Adam)中,都涉及到指数加权平均的概念,它是一种常用的序列数据处理方式。...同时加权平均实现了一个很直观的现象:距离当前时刻越远,对当前值的贡献就越小。...指数加权平均为什么可以平滑波动 展开计算 取 可以看到,加权系数是随着时间以指数形式递减的,时间越近,权重越大,时间越远,权重越小。...如上图所示,是一个温度的指数加权平均的示例,蓝色的点是每天的温度值。...当 时,指数加权平均的结果如图绿色线所示; 当 时,指数加权平均的结果如下图黄色线所示; γ值越小,曲线波动越大 γ值越大,曲线波动越小,但同时变化相对于数据变化趋势也有滞后。

    61950

    工具系列 | 负载均衡算法 - 平滑加权轮询

    简介 在 负载均衡算法 — 轮询 一文中,我们就指出了加权轮询算法一个明显的缺陷。...即在某些特殊的权重下,加权轮询调度会生成不均匀的实例序列,这种不平滑的负载可能会使某些实例出现瞬时高负载的现象,导致系统存在宕机的风险。为了解决这个调度缺陷,就提出了 平滑加权轮询 调度算法。...服务实例 权重值 192.168.10.1 5 192.168.10.2 1 192.168.10.3 1 我们已经知道通过 加权轮询 算法调度后,会生成如下不均匀的调度序列。...总结 尽管,平滑加权轮询算法改善了加权轮询算法调度的缺陷,即调度序列分散的不均匀,避免了实例负载突然加重的可能,但是仍然不能动态感知每个实例的负载。...若由于实例权重配置不合理,或者一些其他原因加重系统负载的情况,平滑加权轮询都无法实现每个实例的负载均衡,这时就需要 有状态 的调度算法来完成。

    2K31

    深度学习算法优化背景知识---指数加权平均

    背景:在深度学习优化算法,如:Momentum、RMSprop、Adam中都涉及到指数加权平均这个概念。...为了系统的理解上面提到的三种深度学习优化算法,先着重理解一下指数加权平均(exponentially weighted averages) 定义 指数移动平均(EMA)也称为指数加权移动平均(EWMA...),是一种求平均数的方法,应用指数级降低的加权因子。...所以这种平均值的求解方法称为指数加权平均 。 温度平均值变化图: ? 应用 主要用在深度学习优化算法中,用来修改梯度下降算法中参数的更新方法。...在优化算法中,\(\frac{1}{1-\beta}\) 可以粗略表示指数加权平均考虑的样本数[由于随着样本容量t的逐渐增多,其系数指数下降,对平均值的贡献程度逐渐降低;影响平均值计算的几个关键样本就是最近几天的样本值

    66230

    加权轮询算法(wrr),这个考点,概率有点高!

    不同于链表、树、动态规划这些有规律可循的算法题,加权轮询算法有很多小的技巧,在实际应用中也比较多。最平滑的Nginx轮询算法,如果你没有见过的话,那自然是永远无法写出来的。...所谓的加权轮询算法,其实就是Weighted Round Robin,简称wrr。在我们配置Nginx的upstream的时候,带权重的轮询,其实就是wrr。...要想提高其运行效率,我们可以借助于Java的TreeMap,空间上换时间。 下面是一个线程安全版本的实现方法,使用物理上的存储来解决时间上的耗费。...然后,基于这个最大公约数,进行轮询算法的运算。 根据介绍的地址,可以很容易写出对应的算法。...这个算法比较巧妙,可以说是非常天才的算法。如果你没有接触过的话,是绝对写不出来的。 虽然算法比较简单,但要证明算法的准确性却不是一件容易的事情。证明的具体过程可以参考以下链接。

    2.7K31

    为什么在优化算法中使用指数加权平均

    本文知识点: 什么是指数加权平均? 为什么在优化算法中使用指数加权平均? β 如何选择? ---- 1....什么是指数加权平均 指数加权平均(exponentially weighted averges),也叫指数加权移动平均,是一种常用的序列数据处理方式。 它的计算公式如下: ?...所以应用比较广泛,在处理统计数据时,在股价等时间序列数据中,CTR 预估中,美团外卖的收入监控报警系统中的 hot-winter 异常点平滑,深度学习的优化算法中都有应用。 ---- 2....为什么在优化算法中使用指数加权平均 上面提到了一些 指数加权平均 的应用,这里我们着重看一下在优化算法中的作用。...以 Momentum 梯度下降法为例, Momentum 梯度下降法,就是计算了梯度的指数加权平均数,并以此来更新权重,它的运行速度几乎总是快于标准的梯度下降算法。 这是为什么呢?

    1.9K10

    机器学习算法实践-标准与局部加权线性回归

    熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。...也就是引入偏差来降低预测的均方误差,本部分总结下局部加权线性回归的方法。...LWLR的Python实现 本部分对局部加权线性回归进行Python实现,对于给定数据求取相应回归系数: ?...总结 本文总结了标准线性回归以及局部加权线性回归的基础知识,并对两张回归方式给与了Python的实现。...可见局部加权线性回归在取得适当的 k ,便可以较好的发现数据的内在潜质,但是局部加权线性回归有个缺点就是类似kNN一样,每计算一个点的预测值就需要利用所有数据样本进行计算,如果数据量很大,计算量会是一个问题

    1.6K61

    智能车电感差比和差加权算法研究

    02发现与构造 1.1 算法的发现过程   电感差比和差加权算法是在进行电感差比和加权算法调试时发现的。...由此可以证明,电感差比和差加权算法,相较电感差比和加权算法对弯道有着更高的拟合度,更加能够适应外界干扰。...C2.4 差比和差加权算法对比差比和中间电感偏置算法的优势   未加比例系数时,差比和算法会将输出误差限制在1以内,但是差比和差加权算法显然突破了这一限制,这也代表着差比和差加权算法损失了一定的赛道适应性...04算法调试 3.1 调节电感差比和加权算法   直接调节电感差比和差加权算法,可能会因无法直观的了解各参数而走弯路,故建议先调出一套相对稳定的电感差比和加权方案,然后将其改写为电感差比和差加权算法。...第二,由第二章所建立的模型中可以看出,小车沿中线行驶时,两加权算法的输出误差曲线相似,差比和差加权算法的参数可由差比和加权算法参数微调获得。

    1K10

    常见面试算法:回归、岭回归、局部加权回归

    /8.Regression/regression.py 2.2.1、局部加权线性回归 项目概述 我们仍然使用上面 线性回归 的数据集,对这些点进行一个 局部加权线性回归 的拟合。...2.3、局部加权线性回归 注意事项 局部加权线性回归也存在一个问题,即增加了计算量,因为它对每个点做预测时都必须使用整个数据集。...逐步线性回归算法的主要优点在于它可以帮助人们理解现有的模型并作出改进。当构建了一个模型后,可以运行该算法找出重要的特征,这样就有可能及时停止对那些不重要特征的收集。...(4) 训练算法:构建不同的模型,采用逐步线性回归和直接的线性回归模型。 (5) 测试算法:使用交叉验证来测试不同的模型,分析哪个效果最好。 (6) 使用算法:这次练习的目标就是生成数据模型。...训练算法: 构建不同的模型 ?

    1.4K10

    加权无向图----Kruskal算法实现最小生成树

    上一篇:加权无向图的实现 加权无向图----Prim算法实现最小生成树 数据结构: 用一条优先队列将边按照权重从小到大排序 用union-find数据结构来识别会形成环的边 用一条队列来保存最小生成树的所有边...Kruskal算法的计算一个含V个顶点和E条边的连通加权无向图的最小生成树所需空间与E成正比,所需时间与ElogE成正比(最坏情况)。...方法:将边都添加进最小优先权队列中,每次从中取出最小的边,检查会不会与已经选出的边构成环(使用union-find算法),如果构成环,则弃掉这条边,否则将这条边加入最小生成树队列。...e: G.edges()) pq.insert(e);//将所有边添加进优先队列 UF uf = new UF(G.V()); //union-find算法

    1K00

    gis地理加权回归步骤_地理加权回归权重

    内容导读 1)回归概念介绍; 2)探索性回归工具(解释变量的选择)使用; 3)广义线性回归工具(GLR)使用; *加更:广义线性回归工具的补充内容 4)地理加权回归工具(GWR)使用+小结。...PART/ 04 地理加权回归工具(GWR)使用 上一节我们讲了GLR广义线性回归,它是一种全局模型,可以构造出最佳描述研究区域中整体数据关系的方程。...地理加权回归是给每一个要素一个独立的线性方程。 在GWR中,每一个要素的方程都是由邻近的要素计算得到的。...ArcMap中只提供了高斯核函数算法来设置局部权重。ArcGIS Pro能够涵盖ArcMap中功能。...GWR与基于森林的分类与回归工具算法不同,但是不能说哪个工具就更加的优秀, 一般来说如果拿到了实验要求,我们更建议大家使用两个工具都运行一下,看哪个工具更合理,模型精度更高。

    2.7K40

    加权无向图----Prim算法实现最小生成树

    上一篇:加权无向图的实现 加权无向图----Kruskal算法实现最小生成树 图的生成树是它的一棵含有其所有顶点的无环连通子图,加权图的最小生成树(MST)是它的一棵权值最小的生成树。...切分定理:在一幅加权图中,给定任意的切分,它横切边中权重最小者必然属于图的最小生成树。 切分定理是解决最小生成树问题的所有算法的基础。  Prim算法能够得到任意加权连通无向图的最小生成树。...算法:使用一个最小优先权队列保存横切边集合,每次新加进来一个结点,就将和该结点关联的所有边添加进最小优先权队列;生成最小树时,从横切边集合中取出最小边,判断是否和目前的树产生环,如果产生环,则舍弃该边;...V个顶点和E条边的连通加权无向图的最小生成树所需空间与E成正比,所需时间与ElogE成正比(最坏情况)。...V个顶点和E条边的连通加权无向图的最小生成树所需空间和V成正比,所需时间和ElogV成正比(最坏情况)。

    1.6K00
    领券