又到摆脱重复工作,换个心情,然而并没有软用的时间了。这次,教大家如何搭建一个好看的jupyter环境。 安装Jupyter 先来展示一下我的环境 python: 3.5.* macos: 10.12.4 安装Jupyter的过程只需安装Anaconda即可。 测试一下初始设置: jupyter notebook 配置ipython 首先,如果每次你打开一个nb(notebook)时,如果都需要载入一些模块,一个很好地方法就是配置ipython的配置文件,可以直接使用以下命令创建配置文件: ipytho
Python是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
jupyter notebook 是个好东西,但是默认皮肤实在是看得人难受,最不能忍的是字号太小。感谢GitHub大神,提供了这款主题更改工具,网上很多人介绍了更换主题的方法。我还做了一些字号、字体等修改,现在舒服多了。另外,前面我写了一个系列的jupyter文章,很详细,有兴趣的小伙伴可以参考文章末尾的历史文章哦!
在 jupyter notebook参数化运行python 时,怕输出太多文件太大,想及时清除 notebook 的输出。
Operating System: Red Hat Enterprise Linux Server 7.0 Kernel: Linux 3.10.0-123.el7.x86_64
JuPyteR是三大编程语言Julia、Python 和 R 的缩写,即可以在 Jupyter NoteBook (JNB) 里面编写这三种语言,除此之外,JNB 还支持轻量级别标记语言(Markdown)的功能。本帖结合 Python 语言来介绍 JNB 里面的玩法。
python script.py python -c “print()” python -i 执行后进入交互式
本文旨在讲解如何在Android平板或手机上搭建Python开发环境,帮助Python初学者有效利用碎片化时间进行学习,从而达到良好的学习效果。
问题描述: 使用Python进行数据分析时,中文是显示不了的, 那么怎么使matplotlib可视化是能够显示中文呢? 你需要具备的知识:matplotlib基本操作,linux基本操作,IPython 解决方法如下:
matplotlib是python绘图最基础的工具包,但是一直以来matplotlib对中文都不是非常友好,默认情况下绘图时中文显示是乱码。
本文介绍了如何在深度学习中利用Docker和NVIDIA GPU进行高效的GPU加速计算,同时探讨了如何安装和配置Docker和NVIDIA GPU驱动,以及如何使用Docker和TensorFlow进行GPU加速的深度学习模型训练。
这里使用的操作系统为win7/10,安装环境是使用Anconda搭建Python环境,然后在Vscode编辑器中安装Python插件,最终能够在Vscode环境下使用Python。
1、编辑(Editing)Ctrl + Space 基本的代码完成(类、方法、属性) Ctrl + Alt + Space 快速导入任意类 Ctrl + Shift + Enter 语句完成 Ctrl + P 参数信息(在方法中调用参数) Ctrl + Q 快速查看文档
为了更加方便快捷的使用Jupyter Notebook,本文将会介绍一些相关的使用技巧。
Setting goals is the first step in turning the invisible into the visible.
Jupyter 笔记本是数据科学家和分析师用于交互式计算、数据可视化和协作的工具。Jupyter 笔记本的基本功能大家都已经很熟悉了,但还有一些鲜为人知的技巧可以大大提高生产力和效率。在这篇文章中,我将介绍10个可以提升体验的高级技巧。
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数据专家做好充分准备。 我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将会使
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数
今年的PyCon于4月9日在加拿大蒙特利尔召开,凭借快速的原型实现能力, Python在学术界得到了广泛应用。最近其官方网站发布了大会教程部分的视频和幻灯片,其中有很多(接近一半数量)跟数据挖掘和机器学习相关的内容,本文对此逐一介绍。 如何形式化一个科学问题然后用Python进行分析 目前有很多很强大Python数据挖掘库,比如Python语言的交互开发环境IPython,Python机器学习库Scikit-learn和网络库NetworkX等。但是却没有一个教程告诉人们该如何将自己的问题很好的形式化处理,
英文:Dynelle Abeyta译文:oschina www.oschina.net/translate/seven-python-tools-all-data-scientists-should-
我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将会使你有更大的优势。下面就了解它们一下吧:
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数据专家做好充分准备。 我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款 Python 工具。The Galvanize Data Science 和 GalvanizeU 课程注重让学生们花大量的时间沉浸在这些技术里。当你找第一份工作的时候,你曾经投入的时间而获得的对工具的深入理解将
Python中一个重要的绘图库Matplotlib,它可以生成各种硬拷贝格式和跨平台交互式环境的出版物质量数据。Matplotlib可用于Python脚本,Python和IPython shell,Jupyter笔记本等。
GitHub 上开源的字体不在少数,但是支持汉字以及其他非英文语言的字体少之又少,记得上一个字体还是 霞鹜文楷,本周 B 站知名设计 UP 主开源了的得意黑体在人文观感和几何特征之间找到了美的平衡。
用Python编程需要什么软件?Python编程是一门适合新手入门的编程语言,现在有不少程序员业余时间学习Python编程语言,学习Python找到好工具会大大提高学习的效率。好用的Python编程软件能将工作效率多倍速提升。
作者:Zolzaya Luvsandorj翻译:陈之炎校对:赵茹萱 本文约2400字,建议阅读5分钟本文为你介绍助力工作流文档化的几个实用技巧。
前言1.Jupyter基本安装安装Anaconda为例可视化安装命令行安装获取安装文件安装anaconda环境变量手动更新环境变量安装Miniconda为例安装Miniconda升级conda、pip conda命令安装pip命令安装2.Jupyter的简单设置启动设置3.Jupyter的实例Jupyter的.ipynb文件显示加载Hexo个人博客静态页面中嵌入Jupyter
来源:otoro 编译:weakish 编者按:Google Brain机器学习开发者hardmu使用TensorFlow,基于CPPN网络生成了许多有趣的高分辨率抽象艺术图片。一起来看看他是怎么做的吧。 钻石恒久远 本文尝试使用TensorFlow探索复合模式生成网络(Compositional pattern-producing networks)。相关代码放在github上。乍看起来,用TensorFlow实现CPPN是高射炮打蚊子,因为用numpy就可以实现CPPN。不过,用TensorFlow
PyCharm 2016.3 公开预览版发布了,PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、Project管理、代
seaborn官方 seaborn官方介绍 seaborn可视化入门 【宝藏级】全网最全的Seaborn详细教程-数据分析必备手册(2万字总结) Seaborn常见绘图总结
提示C引擎不支持正则表达式分割,需要使用Python引擎,此时只需要在读取数据文件时加入参数,engine='python'即可,如下:
Termux是一个Android终端模拟器和Linux环境应用程序,可以直接使用,无需root或设置。自动安装最小基本系统 - 使用APT包管理器可以使用其他软件包。
原文链接:http://blog.csdn.net/ywjun0919/article/details/8692018 来源于书籍:《Python科学计算》 matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。 在L
[root@ipython ~]# yum install gcc-c++ automake autoconf bzip2 zlib库(提供数据压缩用的函式库):
【导读】过去一个月里,我们对近 250 个 Python 开源项目进行了排名,并挑选出热度前 10 的项目。这份清单的平均 github star 数量高达 1140,涵盖了包括性能分析、提取 PDF 中的表格、HTTP Framework、Refactoring, Unix-gazing shell、HTTP APIs、PaperTTY 等主题,希望你能从中找到一个你所感兴趣的项目深入探究。
QQ图片20180204220437.jpg
IPython是Python的交互式Shell,提供了代码自动补完,自动缩进,高亮显示,执行Shell命令等非常有用的特性。特别是它的代码补完功能,例如:在输入zlib.之后按下Tab键,IPython会列出zlib模块下所有的属性、方法和类。完全可以取代自带的bash
IPython,可从 ipython.org 获得,是一个免费的开源项目 ,可用于 Linux,Unix,MacOSX, 和 Windows。 IPython 作者仅要求您在使用 IPython 的任何科学著作中引用 IPython。 IPython 提供了用于交互式计算的架构。 该项目最值得注意的部分是 IPython shell。 IPython 提供了以下组件,其中包括:
导读:Jupyter 项目提供的魔法般的开发体验很大程度上得益于它的 IPython 基因。
在数据科学和机器学习的领域,IPython作为一个强大的交互式计算环境,广泛应用于数据分析和建模中。本文将全面介绍IPython的使用技巧,包括快捷键、魔术命令和扩展功能,让你在工作中更加高效。
前面讲解了ipython里面的一些核心知识点,包括它的优势所在、快捷键操作、内省、什么是魔术命令等等,本文将在前文的基础之上,进一步拓展,讲解ipython的进阶知识点。
IPython是一个非常灵活好用的python终端工具,而且比Python自带的终端工具还多了命令行高亮和自动索引的功能,也是常用的Jupyter Notebook的基础工具。在使用IPython的过程中可以使用它的一些独有的功能——直接运行Shell命令行,和魔术命令。本文介绍的是其中一种魔术命令——重新加载函数模块。
领取专属 10元无门槛券
手把手带您无忧上云