首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ImageNet 的衰落

我做了一个机器学习示例,它使用了曾经最受欢迎的ImageNet 数据集,这是目前每个机器学习从业者都知道的经典图像分类问题。这是一张图片,对1000个类别中的哪一个进行分类。...但这次我注意到了一些奇怪的地方,首先网站崩溃了,当它恢复时,一切都变了,ImageNet 维护者修改了数据集中的每一张图像,以模糊人脸。...今天,大多数最先进的计算机视觉模型都在 ImageNet 上进行了预训练,它们所呈现的自然情境和对象为大多数计算机视觉问题提供了强有力的基础。...由于 ImageNet 的挑战不是识别人,而是识别物体,因此团队决定进一步模糊数据集中人的面孔,最后,他们修改了 243,198 张图片。...如果将 ImageNet 组织为 Pachyderm 中的数据集,则隐私感知版本可能会覆盖原始数据集。

47130
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Rethinking ImageNet Pre-training

    预训练 加快模型收敛」,「ImageNet 预训练不能缓解过拟合现象」,「当目标任务对空间位置更敏感时,ImageNet pretrain所起到的作用会比较小」 。...可以总结一下就是 在数据集充分的条件下,各个任务里,「从头训练的效果并不比在ImageNet预训练过的要差」 从头训练的模型「需要更多的迭代次数」,才能追上预训练模型Finetune的结果 ImageNet...通过我们大量的实验,我们得出了如下的结论 ImageNet预训练加快收敛速度,「特别是在训练初期阶段」。...这告诉我们imagenet pretrain 加 coco数据集上进行finetune,和从头在coco数据集上训练。...预训练 加快模型收敛」 「ImageNet 预训练不能缓解过拟合现象」 「当目标任务对空间位置更敏感时,ImageNet pretrain所起到的作用会比较小」 在笔者看来,训练网络就跟人类学习行为很相似

    1K20

    浅谈混合精度训练imagenet

    浅谈混合精度训练imagenet 零、序 本文没有任何的原理和解读,只有一些实验的结论,对于想使用混合精度训练的同学可以直接参考结论白嫖,或者直接拿github上的代码(文末放送)。...训练nan 由于以前每周都没跑很多模型,问题也不是经常出现,所以以为是偶然时间,不过最近恰好最近要做一些transformer的实验,在跑imagenet baseline(R50)的时候,出现了类似的问题...)优化器LearningRatetop1@accResNet50ImageNet1k256SGD optimizer0.175.40%ResNet50ImageNet1k512SGD optimizer0.275.70%...ResNet50ImageNet1k1024SGD optimizer0.475.57%ResNe50ImageNet1k2048SGD optimizer0.8NaNResNet50ImageNet1k4096SGD...optimizer1.675.79%ResNe50O2 (FP16训练,BN用FP32计算)ImageNet1k4096SGD optimizer1.675.59%ResNet50O3(几乎存FP16

    1.3K20

    ImageNet Classification with Deep Convolutional Neural Networks

    摘要我们训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万幅高分辨率图像分成1000个不同的类。...本文的具体贡献如下:我们对ImageNet large Visual Recognition Challenge (ILSVRC)-2010和ILSVRC-2012比赛中使用的ImageNet子集进行了迄今为止最大的...3、数据集ImageNet是一个超过1500万张高分辨率图像的数据集,属于大约22000个类别。...从2010年开始,作为Pascal视觉对象挑战赛的一部分,每年都会举办一场名为ImageNet大型视觉识别挑战赛(ILSVRC)的比赛。...ImageNet由可变分辨率的图像组成,而我们的系统需要一个恒定的输入维数。因此,我们将图像降采样到256×256的固定分辨率。

    2.6K41

    Imagenet与ILSVRC数据集介绍

    IMAGENET Large Scale Visual Recognition Challenge(ILSVRC) 1. 基本介绍 从2010年开始,每年举办的ILSVRC图像分类和目标检测大赛。...Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。...Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。...Imagenet数据集有1400多万幅图片,涵盖2万多个类别; 其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。...1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2million Imagenet

    7.6K20

    材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

    但由于技术上的挑战,采集大型数据库仍然十分困难,目前公开可用的材质外观实拍数据库的数量非常有限。...利用该系统,研究团队构建了 OpenSVBRDF 公开材质数据库。 图 1:OpenSVBRDF 数据库中的部分材质样例展示。每一行同属一个材质类别。...数据库主页:https://opensvbrdf.github.io/ 目前,数据库对非商业应用完全免费。...研究人员还展示了该数据库在材质生成、材质分类以及材质重建三方面的应用。具体细节请参考原始论文。 图 8:利用 OpenSVBRDF 训练 MaterialGAN 来实现材质生成与插值。...展望 研究人员将努力扩展现有数据库,增加展现多样性外观的材质样本。未来,他们还计划建立同时包含材质外观和几何形状的大规模高精度实测物体数据库

    30110

    Imagenet数据集_mnist数据集介绍

    官网:http://www.image-net.org/ 数据集下载地址:http://www.image-net.org/challenges/LSVRC/ IMAGENET Large Scale...Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。...Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。...Imagenet数据集有1400多万幅图片,涵盖2万多个类别; 其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。...1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2million Imagenet

    91820

    材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

    但由于技术上的挑战,采集大型数据库仍然十分困难,目前公开可用的材质外观实拍数据库的数量非常有限。...利用该系统,研究团队构建了 OpenSVBRDF 公开材质数据库。 图 1:OpenSVBRDF 数据库中的部分材质样例展示。每一行同属一个材质类别。...数据库主页:https://opensvbrdf.github.io/ 目前,数据库对非商业应用完全免费。...研究人员还展示了该数据库在材质生成、材质分类以及材质重建三方面的应用。具体细节请参考原始论文。 图 8:利用 OpenSVBRDF 训练 MaterialGAN 来实现材质生成与插值。...展望 研究人员将努力扩展现有数据库,增加展现多样性外观的材质样本。未来,他们还计划建立同时包含材质外观和几何形状的大规模高精度实测物体数据库

    18910

    AlexNet- ImageNet Classification with Deep Convolutional Neural Networks

    2 The Dataset 公共测试数据库让大家有一个共同的测试基准,这样可以对不同算法的性能进行比较,孰优孰劣就一目了然了。...在深度学习中数据库最有名气的当然是 ImageNet ,李飞飞等人建立的(最近加入了 Google了)。...这里大致介绍一下 ImageNet,该数据库包含 1千5 百万张标记的高清图像,大约 22000个类。这些图像从网络收集的,人工标记类别。...在这个数据库基础上 有了一个 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 用于大家算法比武测试用的。...ImageNet 中很有不同尺寸的图像,我们的系统输入需要固定尺寸的图像,所以我们将图像下采样之256*256。

    74030

    “烘焙”ImageNet:自蒸馏下的知识整合

    “烘焙”在任意网络架构的训练中即插即用,以最少的时间成本实现有效的大幅性能提升,我们在ImageNet及其他多个常见的图像分类基准下进行了算法验证。 ?...深度学习时代以来,有大量的算法致力于提升图像分类的性能,尤其是在最流行的ImageNet基准上。近期一些研究指出,不够完善的人为标注成为了阻碍监督训练的分类模型性能进一步提升的关键问题。...例如,使用BAKE训练的ResNet-50在ImageNet上的top-1分类准确率显著提升1.2%,而相比基线模型训练所增加的计算开销仅为3.7%。...下图汇报了在ImageNet上的top-1分类准确率 ?...Re-labeling imagenet: from single to multi-labels, from global to localized labels.

    80210

    语音领域的「ImageNet时刻」为何迟迟不来?

    本文希望回答以下两个问题: 什么是所谓的「ImageNet 时刻」(ImageNet moment),以及它为什么重要?...为什么语音领域还未实现「ImageNet 时刻」,学界和业界应为此负哪些责任? 什么是「ImageNet 时刻」?...关系型数据库是一个新的基础支持层,它改变了计算的功能。在 20 世纪 70 年代末关系型数据库出现之前,如果你想让数据库向你展示「所有购买该产品并居住在该城市的顾客」,通常需要一个定制的工程项目。...数据库不是用结构来构建的,否则任何任意的交叉引用查询都是一件容易的、常规的事情。而当时如果你想问一个问题,就必须有人来构建它。数据库只是记录保存系统,关系型数据库则把它们变成了商业智能系统。...这里一个重要的相似之处是,尽管关系型数据库有规模经济效应,但也有有限网络或「赢家通吃」效应。如果公司 B 和 A 从同一个供应商处购买相同的数据库软件,那么公司 A 使用的数据库不会变得更好。

    57930
    领券