这段时间小叮咚分词模块基本上没有什么大更新了,不是不想更新,而是感觉好像碰到了天花板,不知道该如何进一步拓展分词的功能了。当然分词不是目的,只是为了让小叮咚理解自然语言的一步必须的中间环节。我对小叮咚的定位是一个智能知识问答系统。这样让小叮咚理解用户输入的内容是最基础也最关键的一步。我们学习一门语言,首先要了解句子的构成,句子的成份,主、谓、宾、定、状、补等等。让机器理解人的语言,也应该采取大致的步骤。
本文主要介绍四个分词插件(ICTCLAS、IKAnalyzer、Ansj、Jcseg)和一种自己写算法实现的方式,以及一些词库的推荐。
一 得到原始文本内容 def FileRead(self,filePath): f = open(filePath) raw=f.read() return raw 二 中文分词 def NlpirTokener(self,raw): result='' tokens = nlpir.Seg(raw) for w in tokens: # result+= w[0]+"/"+w[1] #加词性标注
它一直喜欢的搜索方向,虽然无法做到。但仍保持了狂热的份额。记得那个夏天、这间实验室、这一群人,一切都随风而逝。踏上新征程。我以前没有自己。面对七三分技术的商业环境,我选择了沉淀。社会是一个大机器,我们只是一个小螺丝钉。我们不能容忍半点扭扭捏捏。
一、前言 前面介绍了词库的自动生成的方法,本文介绍如何利用前文所生成的词库进行分词。 二、分词的原理 分词的原理,可以参看吴军老师《数学之美》中的相关章节,这里摘取Google黑板报版本中的部
这个分词程序是文舫工作室贡献出来的。 强烈推荐看看文舫工作室的开发日志,他们的激情可以鼓励很多人...... 自从小叮咚分词程序发布后,很多软件行业的朋友们都来信索取,因为定位的问题,所以小叮咚的分词程序和 ICTCLAS的算法完全不同的。 小叮咚的分词程序的定位是为搜索引擎服务的。可以参考:一种面向搜索引擎的中文切分词方法 ICTCLAS和基于最长词匹配算法变形的分词系统 是面向语法,语义的。 不同的应用导致了不同的分词算法,但是正如车东所说的,我们现在应该跳过分词这个点,面向分词应用了。 我很赞同。 如果大家需要 基于最长词匹配算法变形的分词系统 的代码,可以到这个页面下载申请书,填写后我会给你 发送一份相关代码。 关于分词文德是专家,大家可以下载 Lucene使用者沙龙 中的录音,听听他对分词的一些经验。 这些申请书会在以后整理出来共享的。 相关连接: 文舫工作室的网址 Lucene使用者沙龙
背景:分析用户在世界杯期间讨论最多的话题。 思路:把用户关于世界杯的帖子拉下来,然后做中文分词+词频统计,最后将统计结果简单做个标签云. 后续:中文分词是中文信息处理的基础,分词之后,其实还有特别多有趣的文本挖掘工作可以做,也是个知识发现的过程。 * 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、
* 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。 * 环境准备 (Windows或Linux版本都行): R下载:http://mirrors.us
单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。
LTP [1]- 语言技术平台(LTP) 提供包括中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等丰富、 高效、精准的自然语言处理技术。经过哈工大社会计算与信息检索研究中心 11 年的持续研发和推广,LTP 已经成为国内外最具影响力的中文处理基础平台。 NLPIR汉语分词系统 [2]- 又名ICTCLAS2013,主要功能包括中文分词;词性标注;命名实体识别;用户词典功能;支持GBK编码、UTF8编码、BIG5编码。新增微博分词、新词发现与关键词提取。 结巴中文分词 [3]- 支持三种
【磐创AI导读】:本文为中文分词工具整理分享。想要了解更多技术咨询,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
同步发表于:本人所属公司博客<知盛数据集团西安研发中心技术博客> https://blog.csdn.net/Insightzen_xian/article/details/81168829
注:本文选自人民邮电出版社出版的《PyTorch自然语言处理入门与实战》一书,略有改动。经出版社授权刊登于此。
《自然语言处理实战入门》 第4课 :中文分词原理及相关组件简介的 主要内容 有如下三个部分:
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyaninglm/article/details/88643645
首先说一下搜索引擎切分词的产生的原因。 在进行全文检索时,首先将要检索的内容分割成较短的文字序列。然后生成在每个文字序列中所包含字符串的对应表(索引)。当输入检索语句后,也同样进行分割,与索引进行比较。也就是说,两者即使包含有同样的文字排列,但分割方法不同的话也不能正确检索。 文字的分割方法主要有两种,分别是 词语解析索引 和 文字索引 。 词语解析索引是按照字典中最小的词语单位对文本进行分割,既按词义切分。如中科院的 ICTCLAS。 文字索引是不考虑文本中词的意义,只是按照一定的字长的单位进行切分。如 车东的二元切分法。
我们选择LTP-3.2.0 、ICTCLAS(2015版) 、jieba(C++版)等国内具代表性的分词软件与THULAC做性能比较。我们选择Windows作为测试环境,根据第二届国际汉语分词测评(The SecondInternational Chinese Word Segmentation Bakeoff)发布的国际中文分词测评标准,对不同软件进行了速度和准确率测试。
谢谢大家支持,可以让有兴趣的人关注这个公众号。让知识传播的更加富有活力,谢谢各位读者。 很多人问博主为什么每次的头像是奥黛丽赫本,因为她是博主女神,每天看看女神也是不错的嘛! 查看之前文章请点击右上角,关注并且查看历史消息,谢谢您的阅读支持 THULAC:一个高效的中文词法分析工具包 原文链接请点击阅读原文。 目录 项目介绍 编译和安装 使用方式 代表分词软件的性能对比 词性解释 THULAC模型介绍 获取链接 注意事项 历史 开源协议 相关论文 作者 项目介绍 THULAC(THU Lexical A
众所周知,英文是以词为单位的,词和词之间是靠空格隔开,而中文是以字为单位,句子中所有的字连起来才能描述一个意思。把中文的汉字序列切分成有意义的词,就是中文分词,有些人也称为切词。本文转载自明略研究院的技术经理牟小峰老师讲授的语言处理中的分词问题。
作者:伏草惟存 来源:http://www.cnblogs.com/baiboy/p/nltk2.html 1 Python 的几个自然语言处理工具 NLTK:NLTK 在用 Python 处理自然语言的工具中处于领先的地位。它提供了 WordNet 这种方便处理词汇资源的借口,还有分类、分词、除茎、标注、语法分析、语义推理等类库。 Pattern:Pattern 的自然语言处理工具有词性标注工具(Part-Of-Speech Tagger),N元搜索(n-gram search),情感分析(senti
大家好,今天开始和大家分享,我在自然语言处理(Natural Language Processing,NLP)的一些学习经验和心得体会。
笔者寄语:与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下:
【人工智能头条导读】作者一年前整理了这份关于 NLP 与知识图谱的参考资源,涵盖内容与形式也是非常丰富,接下来人工智能头条还会继续努力,分享更多更好的新资源给大家,也期待能与大家多多交流,一起成长。
对几种中文分析器,从分词准确性和效率两方面进行比较。分析器依次为:StandardAnalyzer、ChineseAnalyzer、CJKAnalyzer、IK_CAnalyzer、MIK_CAnalyzer、MMAnalyzer(JE分词)、PaodingAnalyzer。
本篇文章测试的哈工大LTP、中科院计算所NLPIR、清华大学THULAC和jieba、FoolNLTK、HanLP这六大中文分词工具是由 水...琥珀 完成的。相关测试的文章之前也看到过一些,但本篇阐述的可以说是比较详细的了。这里就分享一下给各位朋友!
全自动安装:easy_install jieba 或者 pip install jieba
机器能跟人类交流吗?能像人类一样理解文本吗?这是大家对人工智能最初的想象。如今,NLP 技术可以充当人类和机器之间沟通的桥梁。环顾周围的生活,我们随时可以享受到 NLP 技术带来的便利,语音识别、机器翻译、问答系统等等。
中文分词 就是将一句话分解成一个词一个词,英文中可以用空格来做,而中文需要用一些技术来处理。 三类分词算法: 1. 基于字符串匹配: 将汉字串与词典中的词进行匹配,如果在词典中找到某个字符串,则识别出一个词。 优点,速度快,都是O(n)时间复杂度,实现简单。 缺点,对歧义和未登录词处理不好。 此类型中常用的几种分词方法有: 1. 正向最大匹配法: 假设词典中最大词条所含的汉字个数为n个,取待处理字符串的前n个字作为匹配字段。若词典中含有该词,则匹配成功,分出该词,然后从被比较字符串的n+1处开始再取n个
据统计:未登录词中中文姓人名在文本中一般只占2%左右,但这其中高达50%以上的人名会产生切分错误。在所有的分词错误中,与人名有关的错误占到了将近90%,这中国人名都是根据人的想法起的名字,有很大的随意性,并且数量巨大,规律也不尽相同。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/52275328
【https://github.com/NLPIR-team/NLPIR/tree/master/License/license%20for%20a%20month/NLPIR-ICTCLAS%E5%88%86%E8%AF%8D%E7%B3%BB%E7%BB%9F%E6%8E%88%E6%9D%83】
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。比如下图: 这是根据总理2014年的政府工作报告制作的可视化词云,分词和词云的制作都是用R,词频的统计用了其他软件。这个图能很直观看到,工作报告的重心是"发展",这是大方向,围绕发展的关键要素有经济建设、改革、农村、城镇等要素。不过这张图中的词语还需要进行优化,因为有些术语或词组可能被拆分成了更小的词语
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。比如下图:
西游记著名桥段“我叫你一声你敢答应吗?”想必大家都有非常深刻的印象,甚至还会浮出这个画面:
分词(word tokenization),也叫切词,即通过某种方式将句子中的各个词语识别并分离开来,使得文本从“字序列”的表示升级为“词序列”表示。分词技术不仅仅适用于中文,对于英文、日文、韩文等语言也同样适用。
中文主要有:NLTK,FoolNLTK,HanLP(java版本),pyhanlp(python版本),Ansj,THULAC,结巴分词,FNLP,哈工大LTP,中科院ICTCLAS分词,GATE,SnowNLP,东北大学NiuTrans,NLPIR,;
分词就是将句子、段落、文章这种长文本,分解为以字词为单位的数据结构,方便后续的处理分析工作。
在逐渐步入DT(DataTechnology)时代的今天,自然语义分析技术越发不可或缺。对于我们每天打交道的中文来说,并没有类似英文空格的边界标志。而理解句子所包含的词语,则是理解汉语语句的第一步。汉语自动分词的任务,通俗地说,就是要由机器在文本中的词与词之间自动加上空格。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
1 月 9 号张小龙在微信之夜上演讲了近 4 个小时,第二天就一堆文字稿出现了,接着是下面这一张图被大量转发
中文分词一直是自然语言处理的一个痛处,早在08年的时候,就曾经有项目涉及到相关的应用(Lunce构建全文搜索引擎),那时的痛,没想到5年后的今天依然存在,切分效果、扩展支持、业务应用等方面依然不甚理想。收费的版本不提了,原因自不必言表,开源版本中,发现之前曾经活跃的版本,大多已经没落(好几年没更新了),存活下来的寥寥无几。我是一个守旧的人,评估版本的选择有些保守,至少目前为止,只看1.0正式版本之后的版本,0.XX的不在考虑范围之内,用了一个周末的时间,对比了十多款的样子,个人感觉源于中科院ICTCLAS的smartcn和IKAnanlyzer效果还是不错的。
为期一个月的 AI100 金融文本分类练习赛完美收官啦!感谢小伙伴们的热情参与。 经过两周的策划与筹备,本次练习赛于4月18日正式上线,一共有25支参赛队伍,405次成绩提交。小伙伴们都表现得相当不错,大部分团队都取得了很好的成绩。 其中,取得第一名的“凡人哥”小伙伴,为大家无私分享了赛经,不光有算法模型分析,还有提升建议哦。 ▌引言 1.1 队伍简介 队伍名“读机器学习日报长大的”,三位成员分别是“凡人哥”、“雨辰酱”和“yuye2311”,均来自苏州大学自然语言处理实验室。 1.2 任务简介
本文谈一谈分词的那些事儿,从定义、难点到基本方法总结,文章最后推荐一些不错的实战利器。
在 计算所汉语词法分析系统ICTCLAS 字典格式解析 一文中简单介绍了一下 ICTCLAS 。本来是要把字典格式一并写上去,无奈不知道怎么描述这个格式,现在终于写出了第一个Java版本的代码,也理清了思路。这个文件格式可以这样来描述:
随着微博研究的深入,社会网络分析和可视化技术的需要,面临中文处理问题,开始钻研文本挖掘的问题,过去的传统的数据挖掘一直研究的是结构化数据,文本挖掘和意见挖掘涉及内容更多,特别是中文处理是不可逾越的障碍! 从网络分析、文本挖掘和意见挖掘角度看,主要解决以下内容:网络抓数据—MySql和Hadoop存储—API接口—创建网络数据—Knime和R语言挖掘-KOL意见领袖和网络分析—中文语料和文本语义—R语言与分词—用户词典构建—情感词典建设和情感分析—文本聚类分类—归并文本挖掘与网络分析—规则建模推荐算法—P
在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法。在(1)中,我们也讨论了这种方法有的缺陷,就是OOV的问题,即对于未登录词会失效在,并简单介绍了如何基于字进行分词,本文着重阐述下如何利用HMM实现基于字的分词方法。
算法实现: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法
领取专属 10元无门槛券
手把手带您无忧上云