上一篇我介绍了坐标系与矩阵的应用之一:ECEF与ENU坐标转换的相关的概念。本篇介绍坐标系在动力学中的应用场景,这里则涉及到Denavit-Hartenberg(DH) Algorithm。
预热文章系列:《GIS历史概述与WebGis应用开发技术浅解》、《GIS坐标系:WGS84,GCJ02,BD09,火星坐标,大地坐标等解析说与转换》、《OGC标准WMTS服务概念与地图商的瓦片编号流派》、《GIS基础知识 - 坐标系、投影、EPSG:4326、EPSG:3857 》我们过一遍如下概念:
模型视图投影矩阵,也就是常说的MVP,有很多的书和资料,参考资料中会列出我推荐的相关资料,会详细介绍推导过程。之所以还要写这一篇,是因为它比较重要,也为了保证‘坐标系与矩阵’系列文章的完整性。所以本篇主要是我对这块的理解,具体的公式推导尽可能不提。
看这篇笔记之前先看一下参考文章,这篇笔记没有系统的讲述矩阵和代码的东西,参考文章写的也有错误的地方,要辨证的看。
地理位置也就是坐标说是 GIS 的灵魂不为过吧,像天气预报、火箭发射包括地震、火山等事故发生时,新闻媒体就会说东经 XX 度、北纬 YY 度发生了什么什么,还有高德百度的地图导航、定位等等都需要用到坐标系统,因为没有准确的位置信息就无法表达地物的位置关系,地图查询分析等等也就无从谈起了
简介 HTML5的Device API中提供了几个DOM事件,可以获得设备的物理方向及运动的信息,API提供的数据不是来源于原始的传感器信息,而是来源于设备上的陀螺仪、加速计以及指南针等。 devic
HTML5的Device API中提供了几个DOM事件,可以获得设备的物理方向及运动的信息,API提供的数据不是来源于原始的传感器信息,而是来源于设备上的陀螺仪、加速计以及指南针等。
DH法一般用一次就丢,然后后面再需要用的时候就会忘,所以本文整理了DH建模法,方便需要使用的时候进行参考。这里不讲原理,只讲结论和方法
在上一篇 【HelloCSS】的第二章第二章-CSS的逻辑属性与盒子模型中提了个问题:
最近断断续续地写出了这么个东西:http://ucren.com/demos/d3d/index.html。
懒人阅读:线性代数是机器学习/深度学习的基石,绝对绕不开。深度学习本质上是通过数据映射规律,映射的过程就是数据在“空间”中的变换,变换遵循的基本法则就是线性代数所描述的内容。因此,线代之于深学,就像加减乘数之于几何(不一定恰当)。
极坐标系在数据可视化中提供了一种独特而直观的方式来呈现数据。Pyecharts作为一个强大的Python图表库,支持多种图表类型,包括极坐标系。本篇技术博客将深入探讨Pyecharts绘制多种炫酷极坐标系的参数说明,并重点关注方向性的呈现。
相信大家的机器人平台STM32端底层控制和机器人urdf建模都已经顺利完成了,在正式开始ros端编写机器人启动功能包之前,我们还不得不学习一些必要的理论知识。别担心数学不好,这里基本都是高中数学。下面我们开始,Are you ready? 没准备好也开始了。
本文主要讲述地理坐标系统的原理以及怎么利用Python进行地理坐标系统转换,内容包含以下几块:
VC如何获取对话框中控件的坐标 GetWindowRect是取得窗口在屏幕坐标系下的RECT坐标(包括客户区和非客户区),这样可以得到窗口的大小和相对屏幕左上角(0,0)的位置。 GetClientRect取得窗口客户区(不包括非客户区)在客户区坐标系下的RECT坐标,可以得到窗口的大小,而不能得到相对屏幕的位置,它的top和left都为0,right和botton是宽和高,因为这个矩阵是在客户区坐标系下(相对于窗口客户区的左上角)的。 ClientToScreen把客户区坐标系下的RECT坐标转换为屏
世界大地测量系统(World geodetic system,简称WGS)是指1960年以来, 由美国国防制图局(DMA)建立的四个世界大地测量系统(WGS60、WGS66、WGS72和WGS84)的统称
本文主要对GEE中的投影信息与参考坐标系及其空间转换参数获取加以介绍;本文是谷歌地球引擎(Google Earth Engine,GEE)系列教学文章的第十二篇。
原点坐标的 x = space 原点坐标的 y = CanvasHeight - space
WKT(Well-known text)是一种文本标记语言,用于表示矢量几何对象、空间参照系统及空间参照系统之间的转换。它的二进制表示方式,亦即WKB(well-known binary)则胜于在传输和在数据库中存储相同的信息。该格式由开放地理空间联盟(OGC)制定。
在开发数字孪生可视化项目时,经常会遇到各种坐标相关的问题可能会导致交付项目的效率降低。关于坐标,可能有这些问题:
这篇文章将会详细介绍格拉姆角场 (Gramian Angular Field),并通过代码示例展示“如何将时间序列数据转换为图像”。
最近想做一个简单的地理位置分析,比如获取一些城市公交站点对应的geohash,geohash其实是将平时常见的经纬度进行了降维,这样可以进行类似附近的餐馆等内容的分析。
所谓的笛卡尔坐标系就是两条相互垂直的数轴组成的一个平面,笛卡尔坐标系有两两条轴x和y轴。我们可以标记这个平面上的任意一个点。
写这篇文章是因为某天看到这样一个公式 r=a(1-cosθ) ,我上网搜了下,原来是笛卡尔心形线的极坐标方程,这个方程里面的确有一个浪漫又悲情的爱情故事,感兴趣的朋友可以点这里看看,而至于这个故事是真是假,这 并不重要。
最近学习地理信息可视化总是遇到投影的麻烦,包括前段时间输出两篇关于simple features的分享中,其中没有特别处理投影的问题,老司机一看就能看出其中存在的投影问题。
下面我们介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。 所谓时空坐标系,包括三维空间坐标系和一维时间坐标系。在此基础上,用解析的形式(坐标)把物体在空间和时间的位置、姿态表示出来。一般三维空间坐标系用三个正交轴X,Y,Z表示物体的位置,用绕这三个正交轴的旋转角度(roll 横滚角, pitch 俯仰角, yaw 偏航角)表示物体的姿态。时间坐标系只有一个维度。为了表述方便,我们一般将空间坐标和时间坐标分开讨论。 摄像机坐标系统 摄像机/摄像头以其低廉的价格、
地球表面并不是一个标准的正球体,根据2020年的测量成果,珠穆朗玛峰高程为8848.86m,而地球上最深的海沟——马里亚纳海沟深度为11034 m。两者相差了将近 20 km!由于地球的自然表面凹凸不平,形态复杂,显然不能作为测量的基准面。所以人们开始寻求一种与地球自然表面接近的规则曲面来代替不规则的地球表面。地球表面积中海洋面积约占71%,陆地面积仅占29%。于是利用水准面表示地球的物理表面,简单说就是假设有一个静止的海水面(一个无波浪、无潮汐、无水流、无大气压变化,处于流体平衡状态的静止海平面),向陆地延伸形成的一个封闭曲面来表示地球的物理表面。
在上一节中,我们在监听鼠标移动事件时,将其坐标范围处理为了[-1,1]的范围,使用如下代码
gripper:机械臂工具坐标系(实际中机械臂都需要携带工具),例子中使用机械臂法兰中心的数据,未使用工具。
原文链接:http://blog.sciencenet.cn/blog-290812-1016263.html
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。 高斯消元法的原理是: 若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程
定义 canvas是HTML5新增的一个重要元素,先看下它的定义: <canvas> is an HTML element which can be used to draw graphics using scripting (usually JavaScript). This can, for instance, be used to draw graphs, make photo composition or simple (and not so simple) animations. 大意: 使用JS
大家好,又见面了,我是你们的朋友全栈君。 参考:https://blog.csdn.net/yaked/article/details/77161160?utm_medium=distribut
如图,空间任意一点P与其图像点p之间的关系,P与相机光心o的连线为oP,oP与像面的交点p即为空间点P在图像平面上的投影。
由于复制过来,如果有格式问题,推荐大家直接去我原网站上查看: 相机模型与坐标转换 - 生活大爆炸
前面我们已经对变换已经有一定了解了,是时候该放到机器人上去实践一下了。当然,我们的实践目标还是臂式机器人。
地理坐标系就是把地球当成一个球体来看,以球心为参照点,通过经纬度来定位某个坐标点。
大地水准面是最接近地球整体形状的重力位水准面,也是正高系统的高程基准面。由静止海水面并向大陆延伸所形成的不规则的封闭曲面。它是重力等位面,即物体沿该面运动时,重力不做功(如水在这个面上是不会流动的)。大地水准面是指与全球平均海平面(或静止海水面)相重合的水准面。大地水准面是描述地球形状的一个重要物理参考面,也是海拔高程系统的起算面。大地水准面的确定是通过确定它与参考椭球面的间距-大地水准面差距(对于似大地水准面而言,则称为高程异常)来实现的。
首先讲一下在工业应用中,手和眼(摄像机)的两种位置关系,第一种是将摄像机(眼)固定在机械手(手)上面,眼随手移动;第二种是摄像机(眼)和机械手(手)分离,眼的位置相对于手是固定的,下面用网上的两张图来说明下:
焊接机器人是一种自动化设备,用于进行焊接操作。为了确保焊接过程的准确性和效率,焊接机器人需要在三维空间中进行定位和控制。这涉及到使用不同的坐标系,以便机器人能够精确地执行任务。本文将重点讨论焊接机器人常用的四种坐标系:关节坐标系、直角坐标系、工具坐标系和用户坐标系。
坐标系转换在很多方面都会用到,比如机器人中的骨骼关节间的空间关系,GIS中的坐标系,渲染和计算机视觉中的相机等,往往需要采用矩阵来实现不同坐标系间的转换。因此,这里主要涉及到几何和线性代数两方面的数学知识。
前面的几篇文章介绍了如何绘制网格图、坐标系、坐标系中的点,那么本篇章将这些步骤方法,以js原型面向对象的方式开发,编写出一个折线图的示例。
上一篇章介绍了如何使用Canvas绘制坐标系,那么本篇章来看看怎么简单绘制坐标系中的点。
在上一篇文章中我们对geopandas中的数据结构展开了较为全面的学习,其中涉及到面积长度等计算的过程中提到了具体的计算结果与所选择的投影坐标系关系密切,投影坐标系选择的不恰当会带来计算结果的偏差,直接关乎整个分析过程的有效与否。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>数据到图形的映射(使用encode)</title> <script src="js/echarts.min.js"></script> </head> <body> <script ty
等参数单元(简称等参元)就是对单元几何形状和单元内的参变量函数采用相同数目的节点参数和相同的形函数进行变换而设计出的一种单元类型。
最近好多人问我,坐标系转换真的太难了!GCJ02,BD09,火星坐标,大地坐标,啊啊啊,快要疯了!
智能视觉测量是指用计算机视觉技术实现对物体的尺寸测量,它在工业、林业、物流等领域有重要的应用。一般做法是用相机或激光雷达对物体拍照/扫描,然后识别图像中的待测量物体,得到其边界或形状信息,最后在坐标系中计算物体的尺寸。本文将以原木智能检尺(直径测量)为例,介绍智能视觉测量系统的技术原理,以及需要解决的难点问题。
领取专属 10元无门槛券
手把手带您无忧上云