首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    二值化神经网络(BNN)综述

    【GiantPandaCV导语】二值化神经网络BNN由于可以实现极高的压缩比和加速效果,所以它是推动以深度神经网络为代表的人工智能模型在资源受限和功耗受限的移动端设备,嵌入式设备上落地应用的一门非常有潜力的技术。虽然目前的BNN仍然存在着很多不足,如模型精度仍然比全精度低了不少,无法有效地泛化到更复杂的任务上,依赖于特定的硬件架构和软件框架......,但我们同时也能看到BNN从最初的2015年ImageNet上只有27%的Top-1准确率发展到2020年ReActNet-C的71.4%的进步,这五年时间众多研究人员在这条道路上不断推动着BNN朝着更准更快更稳的方向发展,所以我们有理由相信,BNN未来可期!

    02

    MATLAB中imfill()函数[通俗易懂]

    函数功能: 该函数用于填充bai图像区域和“空洞”。 语法格式: BW2 = imfill(BW) 这种du格式将一张二值图像显示在屏zhi幕上, 允许用户使用鼠标在图像上点几个点, 这几个点围成的区域即要填充的区域。要以这种交互方式操作, BW必须是一个二维的图像。用户可以通过按Backspace键或者Delete键来取消之前选择的区域;通过shift+鼠标左键单击或者鼠标右键单击或双击可以确定选择区域。 [BW2,locations] = imfill(BW) 这种方式, 将返回用户的取样点索引值。注意这里索引值不是选取样点的坐标。 BW2 = imfill(BW,locations) 这种格式允许用户编程时指定选取样点的索引。locations是个多维数组时, 数组每一行指定一个区域。 BW2 = imfill(BW,’holes’) 填充二值图像中的空洞区域。 如, 黑色的背景上有个白色的圆圈。 则这个圆圈内区域将被填充。 I2 = imfill(I) 这种调用格式将填充灰度图像中所有的空洞区域。 BW2 = imfill(BW,locations,conn) 程序示例 close all; clear; clc; BW4 = im2bw(imread(‘coins.png’)); BW5 = imfill(BW4,’holes’); subplot(121), imshow(BW4), title(‘源图像二值化’) subplot(122), imshow(BW5), title(‘填充后的图像’)

    02

    你开车低头看个微信消息都能被拍的清清楚楚,因为有这些黑科技

    机器视觉图像处理被广泛应用于交通领域(车辆检测) 相对于国外,国内将机器视觉图像处理技术应用于交通的发展,在近年已经有相当程度的进步,如国内目前相当热门的车牌识别,有多个厂家推出了相应的产品。下面视觉检测设备厂家将针对图像处理技术在交通上的应用分车辆检测、车种识别、车辆跟踪三个部分做简单介绍,今天我们首先分析的是机器视觉在车辆检测上的应用。 机器视觉在车辆检测的方法可大致归类为样本点检测、检测线检测以及全画面式检测等途径。 1、样本点检测:在车道的某一部分选取类似矩阵的样本点,当车辆通过时,样本点之灰阶值与

    08
    领券