HBase数据模型(1) HBase数据模型(2) 1.0 HBase的特性 Table HBase以表(Table)的方式组织数据,数据存储在表中。 Row/Column 行(Row)
Apache HBase 是以 hdfs 为数据存储的,一种分布式、可扩展的 NoSQL 数据库。
本文介绍了HBase数据模型的相关知识,包括版本、排序、连接查询、计数器、原子操作、行锁、自动分区、CAP原理等。
一 Hbase是个啥东东? 在说Hase是个啥家伙之前,首先我们来看看两个概念。面向行存储和面向列存储。面向行存储。我相信大伙儿应该都清楚,我们熟悉的RDBMS就是此种类型的。面向行存储的数据库主要适合于事务性要求严格场合,或者说面向行存储的存储系统适合OLTP。可是依据CAP理论,传统的RDBMS。为了实现强一致性,通过严格的ACID事务来进行同步,这就造成了系统的可用性和伸缩性方面大大折扣。而眼下的非常多NoSQL产品,包含Hbase,它们都是一种终于一致性的系统,它们为了高的可用性牺牲了一部分的一致性。好像。我上面说了面向列存储,那么究竟什么是面向列存储呢?Hbase,Casandra,Bigtable都属于面向列存储的分布式存储系统。 看到这里,假设您不明确Hbase是个啥东东,不要紧,我再总结一下下: Hbase是一个面向列存储的分布式存储系统。它的长处在于能够实现高性能的并发读写操作,同一时候Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。 二 Hbase数据模型 HBase,Cassandra的数据模型很类似。他们的思想都是来源于Google的Bigtable,因此这三者的数据模型很类似,唯一不同的就是Cassandra具有Super cloumn family的概念,而Hbase眼下我没发现。好了。废话少说。我们来看看Hbase的数据模型究竟是个啥东东。 在Hbase里面有以下两个基本的概念,Row key,Column Family。我们首先来看看Column family,Column family中文又名“列族”,Column family是在系统启动之前预先定义好的,每个Column Family都能够依据“限定符”有多个column.以下我们来举个样例就会很的清晰了。 假如系统中有一个User表。假设依照传统的RDBMS的话。User表中的列是固定的,比方schema 定义了name,age,sex等属性。User的属性是不能动态添加的。可是假设採用列存储系统。比方Hbase。那么我们能够定义User表,然后定义info 列族。User的数据能够分为:info:name = zhangsan,info:age=30,info:sex=male等。假设后来你又想添加另外的属性。这样非常方便仅仅须要info:newProperty就能够了。 或许前面的这个样例还不够清晰,我们再举个样例来解释一下。熟悉SNS的朋友,应该都知道有好友Feed,一般设计Feed,我们都是依照“某人在某时做了标题为某某的事情”,可是同一时候一般我们也会预留一下keyword,比方有时候feed或许须要url,feed须要image属性等,这样来说。feed本身的属性是不确定的。因此假设採用传统的关系数据库将很麻烦。况且关系数据库会造成一些为null的单元浪费,而列存储就不会出现这个问题。在Hbase里,假设每个column 单元没有值,那么是占用空间的。
今天扯一下 Hbase ,我对 Hbase 的了解起源于两篇文章Understanding HBase and BigTable和《李逵麻子,李鬼坑人--BigTable的数据模型》;这两篇本质上还是一篇文章,《李逵麻子,李鬼坑人--BigTable的数据模型》类似于Understanding HBase and BigTable的中文版讲解。还好的是我是先读的这两篇文章,再去看 Hbase 的官方文档和使用 Hbase ,否则真有可能被 Hbase 的概念给糊弄进去了。要知道,对一个软件或者工具,要想深刻理解和使用它,第一印象很重要,它决定你学习的进度,要是弄错了,学习的时候就会很痛苦,怎么也无法理解这个工具怎么设计的。
HBase 与传统关系数据库(例如MySQL,PostgreSQL,Oracle等)在架构的设计以及为应用程序提供的功能方面有很大的不同。HBase 权衡了其中一些功能,以实现更好的可扩展性以及更灵活的模式。与关系数据库相比,HBase 表的设计有很大的不同。下面将通过解释数据模型向您介绍 HBase 表设计的基础知识,并通过一个例子深入探讨 HBase 表的设计。
作为一名长期关注并实践HBase技术的博主,我深知其在大数据领域尤其是NoSQL数据库中的独特价值及其在面试中的重要地位。本文将深入探讨HBase的关键技术、实战应用,以及面试必备知识点与常见问题解析,助你在面试中展现出深厚的HBase技术功底。
▊《Offer来了:Java面试核心知识点精讲.框架篇》 王磊 著 电子书售价:49.5元 2020年06月出版 本书是对Java程序员面试中常见的微服务、网络编程、分布式存储和分布式计算等必备知识点的总结,包括Spring原理及应用、Spring Cloud原理及应用、Netty网络编程原理及应用、ZooKeeper原理及应用、Kafka原理及应用、Hadoop原理及应用、HBase原理及应用、Cassandra原理及应用、ElasticSearch原理及应用、Spark原理及应用、Flink原理及应用。
写在第34期 到底什么是NoSQL?公众号一系列前菜,大家可以看看: NoSQL 还是 SQL ?这一篇讲清楚 新数仓系列:Hbase周边生态梳理(1) 新数仓系列:Hbase国内开发者生存现状(2)
HDFS是一种开源的分布式文件系统,基于常见商用硬件构建海量大规模存储集群,提供极低的存储成本,极大的存储容量支持。 HDFS提供高可靠性的数据保障,通常采用三副本冗余存储数据到不同的机器来实现容灾备份能力。 HBase基于HDFS实现存储计算分离架构的分布式表格存储服务
Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C ++和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。
目录: 什么是大数据 Hadoop介绍-HDFS、MR、Hbase 大数据平台应用举例-腾讯 公司的大数据平台架构 “就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的
NoSQL 数据库和关系型数据库在数据存储、处理方式上有显著的区别,主要体现在数据模型、扩展性、数据存储方式、事务支持、查询能力等方面。NoSQL数据库主要适用于大数据和实时的网络应用,而关系型数据库适用于需要复杂事务支持的应用系统。
KYLIN、DRUID、CLICKHOUSE是目前主流的OLAP引擎,本文尝试从数据模型和索引结构两个角度,分析这几个引擎的核心技术,并做简单对比。在阅读本文之前希望能对KYLIN、DRUID、CLICKHOUSE有所理解。
导读:Kylin、Druid、ClickHouse是目前主流的OLAP引擎,本文尝试从数据模型和索引结构两个角度,分析这几个引擎的核心技术,并做简单对比。在阅读本文之前希望能对Kylin、Druid、ClickHouse有所理解。
Kylin、Druid、ClickHouse是目前主流的OLAP引擎,本文尝试从数据模型和索引结构两个角度,分析这几个引擎的核心技术,并做简单对比。在阅读本文之前希望能对Kylin、Druid、ClickHouse有所理解。
Hbase是运行在Hadoop上的NoSQL数据库,它是一个分布式的和可扩展的大数据仓库,也就是说HBase能够利用HDFS的分布式处理模式,并从Hadoop的MapReduce程序模型中获益。这意味着在一组商业硬件上存储许多具有数十亿行和上百万列的大表。除去Hadoop的优势,HBase本身就是十分强大的数据库,它能够融合key/value存储模式带来实时查询的能力,以及通过MapReduce进行离线处理或者批处理的能力。总的来说,Hbase能够让你在大量的数据中查询记录,也可以从中获得综合分析报告。
从 Google 的 BigTable 开始,一系列可以进行海量数据存储与访问的数据库被设计出来,NoSQL 这一概念被提了出来。
键值数据库( Key-Value Database)会使用一个哈希表,这个表中有一个特定的key和一个指针指向特定的value。key可以用来定位value,即存储和检索具体的Value。
在 db-engines 网站上,我们看到,数据库系统的主要市场虽然还是被 Oracle、Mysql、Ms SQL Server 三个关系型数据库所占据,但是 NoSql 的数据库也正在呈现上升态势。 虽然业内传闻的关于 DBA 将死的传言有些过于夸张,但是几个 NoSQL 数据库以其难以替代的优势抢占了很大的一部分市场。
参加活动赢取话费和一个月免费会员 点击底部阅读原文,参加PPV课玩转可视化图表,赢取话费和PPV课一个月免费会员,精品课程免费看! 目录: 什么是大数据 Hadoop介绍-HDFS、MR、Hbase
Hadoop原生的特点是解决大规模数据的离线批量处理场景,HDFS具备强大存储能力,但是并没有提供很强的数据查询机制。HBase组件则是基于HDFS文件系统之上提供类似于BigTable服务。
导读 在京东物流技术中台架构升级项目中,物流交易体系以新的接入-交易-履约-执行四层架构进行重新搭建,其中交易订单负责物流与客户之间产生物流服务契约的单据流量收口,同时承载向下游物流履约层分发的职责。在这个大的背景下,交易需支撑日千万订单存储,如何保障订单数据基座高扩展、高可用、高吞吐?
面向列的据库HBase 第一章 Hbase介绍 Hadoop生态系统图 非关系型数据库知识面扩展 HBase简介 HBase架构 HBase数据模型 第二章 HBase安装 伪分布式搭建 完全分布式搭建 简单免密钥配置 第三章 HBase-API 环境搭建 Demo案例 模拟通话数据的产生和处理 HBase工具类
Hbase最核心但也是最难理解的就是数据模型,由于与传统的关系型数据库不同,虽然Hbase也有表(Table),也有行(Row)和列(Column),但是与关系型数据库不同的是Hbase有一个列族(Column Family)的概念,它将一列或者多列组织在一起,HBase必须属于某一个列族。
目录: 一、关系型数据库 (一)常用关系型数据库: 二、非关系型数据库 (一)常用非关系型数据库: (二)分类: 文档型 key-value型 列式数据库 图形数据库 一、关系型数据库 (一)常用关系型数据库: MySQL、SQL-Server、SQLite、MariaDB、ORACLE、PostgreSQL、… 二、非关系型数据库 (一)常用非关系型数据库: CouchDB、MongoDB、 Redis、Voldemort、Oracle、Cassandra
一、 准备环境 Java-- jdk-8u121-linux-x64.tar.gz Hadoop--hadoop-2.7.4.tar.gz (jdk1.7会报错) Hbase-- hbase-1.2.0-bin.tar.gz Zookeeper-- zookeeper-3.4.5.tar.gz 本系列教程所有jar包,请关注微信公众号 :Spark高级玩法,输入software获取。 Centos 6.5是本文采用的操作系统 二, 安装Zookeeper Zookeeper的单机版安装很简单。主要是配置数据
谷歌在2006年的一份研究报告中首次对Bigtable进行了阐述,如果你熟悉Bigtable这个名词,那么:行先是以一种非常独特的方式被索引,随后Bigtable利用行键对数据进行分割,将它们分布到集群中。这句话你应该不陌生。
Kylin沿用了原来的数据仓库技术中的Cube概念,把无限数据按有限的维度进行“预处理”,然后将结果(Cube)加载到Hbase里,供用户查询使用。
本文作者:康凯森,来源于:https://blog.bcmeng.com,文章写的非常详细,从各个方面对Kylin和Doris进行了对比。
今天给大家带来的是大数据开发-HBase关系对比,相信大家也都发现了,有很多框架的用处都差不多,为什么只用这个而不用那个呢?这就是两者之间的一些不同之处的对比,然后选择一个最适用的,本期就是关系对比,为什么它最适用!
教程地址:http://www.showmeai.tech/tutorials/84
如果这时候直接去看MySQL、Mongo、HBase、Redis等数据库的用法、特点、区别,其实有点太着急了。
今天为大家推荐一些翻译整理的大数据相关的学习资源,希望能给大家带来价值。
要在 Spring Boot 项目中实现 HBase 的功能,首先需要理解原理和作用,然后通过实际操作将其集成到 Spring Boot 项目中。以下是从理论到实践的详细步骤:
提到企业数字化转型,不得不提现在的一个主流观点:未来的企业必将成为数字化企业,每个公司都将会成为软件公司!未来企业增长和竞争的能力越来越取决于其数字化创新能力。为了应对企业数字化转型,企业IT架构采用分布式、微服务、移动化、大数据等技术来应对业务变化带来的挑战。
本篇文章主要介绍Apache Hudi在医疗大数据中的应用,主要分为5个部分进行介绍:1. 建设背景,2. 为什么选择Hudi,3. Hudi数据同步,4. 存储类型选择及查询优化,5. 未来发展与思考。
最近有个朋友面试上了阿里P7,薪资暴涨了50%,我私下问他能不能给大家分析一下经验。 聊了很多,最后给我推荐了一份特别全的的八股文资料,这个资料在他面试的过程中给了他很多的帮助。 这份资料最初的版本,是来自某个大厂面试官给学弟整理的面经,后来经过学弟的不断收集、完善,慢慢形成了一个Java资料库。 现在的完整版资料是视频合集+PDF合集,包含了有Java 集合、JVM、多线程、设计模式、算法调优、Spring全家桶、MyBatis、ZooKeeper、Dubbo、Elasticsearch、MongoDB、
首先看两者的简单介绍: ElasticSearch:是一个基于Lucene的搜索引擎; HBase:是一个开源的,非关系的,分布式的数据模型存储引擎; 两个框架都可以做分布式的存储和搜索,但是在海量日志数据面前,具体应该选择哪个框架呢? 以下几点可以考虑: 查询复杂度:HBase支持比较简单的行或者区间查询,如果更复杂的查询功能就不太容易支持。ES支持的查询比较丰富。 数据量:两者都是支持海量数据的。由于HBase天生的大数据身份,本能的支撑更大量级的数据;ES最开始只是一个基于Lucene的搜索引擎
hbase是bigtable的开源java版本。是建立在hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写nosql的数据库系统。
最适合使用Hbase存储的数据是非常稀疏的数据(非结构化或者半结构化的数据)。Hbase之所以擅长存储这类数据,是因为Hbase是column-oriented列导向的存储机制,而我们熟知的RDBMS都是row- oriented行导向的存储机制(郁闷的是我看过N本关于关系数据库的介绍从来没有提到过row- oriented行导向存储这个概念)。在列导向的存储机制下对于Null值得存储是不占用任何空间的。比如,如果某个表 UserTable有10列,但在存储时只有一列有数据,那么其他空值的9列是不占用存储空间的(普通的数据库MySql是如何占用存储空间的呢?)。 Hbase适合存储非结构化的稀疏数据的另一原因是他对列集合 column families 处理机制。 打个比方,ruby和python这样的动态语言和c++、java类的编译语言有什么不同? 对于我来说,最显然的不同就是你不需要为变量预先指定一个类型。Ok ,现在Hbase为未来的DBA也带来了这个激动人心的特性,你只需要告诉你的数据存储到Hbase的那个column families 就可以了,不需要指定它的具体类型:char,varchar,int,tinyint,text等等。 Hbase还有很多特性,比如不支持join查询,但你存储时可以用:parent-child tuple 的方式来变相解决。 由于它是Google BigTable的 Java 实现,你可以参考一下:google bigtable 。 下面3副图是Hbase的架构、数据模型和一个表格例子,你也可以从:Hadoop summit 上 获取更多的信息。
1. 灵活的数据模型:NoSQL数据库不局限于关系模型,支持多种数据结构,如键值对、文档、列族、图形等,能够更自然地映射复杂、多变的数据类型,尤其适合处理半结构化和非结构化数据。
HBase是大数据NoSQL领域里非常重要的分布式KV数据库,是一个高可靠、高性能、高伸缩的分布式存储系统,目前国内知名公司都有在大规模使用,社区也非常活跃。本文就是学习HBase的敲门砖,主要从以下几个方面解读HBase。
各位好,今天和大家分享“大数据资产管理实战”这个课题。 本次分享包括大数据资产管理的概述、方法论和实施效果三个部分的内容。 · · · 第一部分:大数据资产管理概述 提到企业数字化转型,不得不提现在的
Apache Kylin采用“预计算”的模式,用户只需要提前定义好查询维度,Kylin将帮助我们进行计算,并将结果存储到HBase中,为海量数据的查询和分析提供亚秒级返回,是一种典型的“空间换时间”的解决方案。
OpenTSDB是一个分布式、可伸缩的时序数据库,支持高达每秒百万级的写入能力,支持毫秒级精度的数据存储,不需要降精度也可以永久保存数据。其优越的写性能和存储能力,得益于其底层依赖的HBase,HBase采用LSM树结构存储引擎加上分布式的架构,提供了优越的写入能力,底层依赖的完全水平扩展的HDFS提供了优越的存储能力。
1、数据模型:Hive是基于Hadoop的关系型数据仓库,支持类SQL语言进行数据查询和处理,数据存储在Hadoop分布式文件系统中。HBase是一个分布式的列式NoSQL数据库,以键值对的方式存储数据,可以直接访问数据。
HBase中的一行由一个行键和一个或多个列组成,列的值与这些列相关联。存储行时,按行键按字母顺序排列。因此,行键的设计非常重要。目标是以这样一种方式存储数据,即相关的行彼此接近。常见的行键模式是网站域。如果您的行键是域,您可能应该反向存储它们(org.apache.www, org.apache.mail, org.apache.jira)。这样,所有Apache域都在表中彼此接近,而不是基于子域的第一个字母展开。
本文链接: https://moeci.com/posts/分类-大数据/HBase/
领取专属 10元无门槛券
手把手带您无忧上云