一 慕课网 1.Hadoop大数据平台架构与实践--基础篇(已学习) 链接:https://www.imooc.com/learn/391 2.Hadoop进阶(已学习) 链接:https://www.imooc.com/learn/890 二 极客学院 1.Hadoop 概述(已学习) 链接:http://www.jikexueyuan.com/course/677.html 2.Hadoop 架构介绍(已学习) 链接:http://www.jikexueyuan.com/course/986.html
而数据库作为软件系统的核心组成部分,尤其是面对当下很多基于微服务、容器化的服务层可以无限弹性扩展的云原生时代,了解不同数据库的基本原理和适用场景,对很多技术人来说避免瓶颈、解决瓶颈,从一开始就能选择好适合自己业务场景的数据库,都是很有帮助的。
“大数据” 三个字其实是个marketing语言,从技术角度看,包含范围很广,计算、存储、网络都涉及,知识点广、学习难度高。
本书内容丰富,展示了如何使用Hadoop构建可靠、可伸缩的分布式系统,程序员可从中探索如何分析海量数据集,管理员可以了解如何建立与运行Hadoop集群。
《Hadoop大数据技术体系:原理、内幕与项目实践》课程体系 课程特色: 本课程以 “互联网日志分析系统”这一大数据应用案例为主线,依次介绍相关的大数据技术,涉及数据收集,存储,数据分析以及数据可视化,最终会形成一个完整的大数据项目。 本课程以目前主流的,最新Hadoop稳定版2.7.x为基础,同时兼介绍3.0版本新增特性及使用,深入浅出地介绍Hadoop大数据技术体系的原理、内幕及案例实践, 内容包括大数据收集、存储、分布式资源管理以及各类主要计算引擎, 具体包括数据收集组件Flume、分布式文件
编程语言 java C C++ golang 算法 数据结构算法 网络协议 dns dns原理入门 dns 类型 dns 解析流程 http http 包结构 http 常用头 http 状态码类型 tcp 四次挥手 四次挥手产生机制 滑动窗口 滑动窗口作用 How to Adjust the TCP Window Size Limit on Linux 重构 领域驱动 并发控制 异步与响应式 redis mysql 存储类型 kafka kafka 的作用 kafka 产生的使用场景 kafka 的基本原
第一阶段:linux+搜索+hadoop体系Linux大纲这章是基础课程,帮大家进入大数据领域打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,kvm,openstack等众多课程。因为企业中无一例外的是使用Linux来搭建或部署项目。1) Linux的介绍,Linux的安装:VMware Workstation虚拟软件安装过程、CentOS虚拟机安装过程
随着大数据时代的发展,诞生了一大批大数据时代下的新数据库产品,如今MongoDB、Redis、HBase这些NoSQL数据库已经成为了互联网开发的新标配,SQL一统江湖的时代不复存在了。
温馨提示:本文内容较长,如果觉得有用,建议收藏。另外记得分享、点赞、在看,素质三连哦!
客户端在插入,删除,查询数据时需要知道哪个Region服务器上存有自己所需的数据,这个查找Region的过程称之为Region定位。
对大数据集或非常高吞吐量,仅复制还不够,还需将数据拆分,成为分区(partitions),也称分片(sharding)1。
本次分享第【1】部分:什么是数据科学。 本次分享第【2】部分:如何从小白成长为数据科学家。 本次分享第【3】部分:如何以Python为工具走入数据科学之门。 分享主题:Data Science学习分享
Hive作为Hadoop家族的重要一员,具有学习成本低,开发者可通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用。在攒库中,Hive也不负众望,得到了非常高的票数。为此,CSDN知识库特邀社区专家蒋守壮(博客: http://blog.csdn.net/jiangshouzhuang )绘制了Hive技术图谱,帮助广大开发者更加系统、全面的学习Hive技术。 Hive知识库发布,速来关注! 我要成为Hive专家团一员,筛选优质内容>>猛戳这里: http://li
Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待。
(1)Hadoop适不适用于电子政务?为什么? 电子政务是利用互联网技术实现政府组织结构和工作流程的重组优化,建成一个精简、高效、廉洁、公平的政府运作信息服务平台。因此电子政务肯定会产生相关的大量数据以及相应的计算需求,而这两种需求涉及的数据和计算达到一定规模时传统的系统架构将不能满足,就需要借助海量数据处理平台,例如Hadoop技术,因此可以利用Hadoop技术来构建电子政务云平台。 总结一下,任何系统没有绝对的适合和不适合,只有当需求出现时才可以决定,在一个非常小的电子政务系统上如果没有打数据处
HBase的基础框架,将分成几个章节对HBase进行描述,不当之处还望大家批评指正。下面是了解HBase基础架构的第一部分。
随着互联网大潮的到来,越来越多网站,应用系统需要海量数据的支撑,高并发、低延迟、高可用、高扩展等要求在传统的关系型数据库中已经得不到满足,或者说关系型数据库应对这些需求已经显得力不从心了。关系型数据库经过几十年的发展已经很成熟,强大的sql语句支持,完美的ACID属性的支持,使得关系型数据库广泛应用于各种各样的应用系统中,但是应用的场景广泛并非意味着完美。
答: HBase利用Hadoop MapReduce来处理HBase中的海量数据,实现高性能计算;利用Zookeeper作为协同服务,实现稳定服务和失败恢复;使用HDFS作为高可靠的底层存储,利用廉价集群提供海量数据存储能力; Sqoop为HBase的底层数据导入功能,Pig和Hive为HBase提供了高层语言支持,HBase是BigTable的开源实现。
Apache Kafka 是分布式发布-订阅消息系统,在 kafka 官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统。
本文简单梳理下其中一个应用比较广的HBASE的生态,可能不全,有更多的请大家留言。具体HBASE的基本原理扫描大家可以自行百度下,另外,要系统掌握HBASE,推荐看下《HBASE权威指南》。 1 Kerberos 什么是Kerberos? Kerberos is a network authentication protocol. It is designed to provide strong authentication for client/server applications by using s
◆ NoSQL数据存储 传统的架构方法是在服务之间共享一个数据库,而微服务却与之相反,每个微服务都拥有独立、自主、专门的数据存储。微服务数据存储是基础设施构建的重点,因为它提供服务解耦、数据存储自主性、小型化开发、测试设置等特性,有助于应用程序更快地交付或更新。选择理想的数据存储的第一步是确定微服务数据的性质,可以根据数据的特点将数据大致做如下划分。 全局共享数据:缓存服务器是存储短暂数据很好的例子。它是一个临时数据存储,其目的是通过实时提供信息来改善用户体验。 事务数据:从交易(如付款处理和订单处理)收集
大数据指不用随机分析法这样捷径,而采用所有数据进行分析处理的方法。互联网时代每个企业每天都要产生庞大的数据,对数据进行储存,对有效的数据进行挖掘分析并应用需要依赖于大数据开发,大数据开发课程采用真实商业数据源并融合云计算+机器学习,让学员有实力入职一线互联网企业。
传统的架构方法是在服务之间共享一个数据库,而微服务却与之相反,每个微服务都拥有独立、自主、专门的数据存储。微服务数据存储是基础设施构建的重点,因为它提供服务解耦、数据存储自主性、小型化开发、测试设置等特性,有助于应用程序更快地交付或更新。选择理想的数据存储的第一步是确定微服务数据的性质,可以根据数据的特点将数据大致做如下划分。
Online Learning(在线机器学习)是工业界比较常用的机器学习算法,在很多场景下都能有很好的效果。本文主要介绍Online Learning的基本原理和两种常用的Online Learning算法:FTRL(Follow The Regularized Leader)[1]和BPR(Bayesian Probit Regression)[2],以及Online Learning的实践应用。
面试题总结是一个长期工作,面试不停,这份面试题总结就不会停。以后会慢慢把Java相关的面试题、计算机网络等都加进来,其实这不仅仅是一份面试题,更是一份面试参考,让你熟悉面试题各种提问情况,当然,项目部分,就只能看自己了,毕竟每个人简历、实习、项目等都不一样。
随着互联网大数据时代的到来,越来越多的网站、应用系统都需要支撑大量甚至海量数据存储,同时还伴有高并发、高可用、高可扩展等特性要求。
“带你走进Apache Kylin的世界”
就目前来说Hadoop已经成为处理大数据的问题的必备的组件,许多的大厂都已经在使用Hadoop软件栈处理自己的问题,那为什么Hadoop技术栈这么流行?
精益制造的基本原理-连续流(1) 精益制造的基本原理-连续流(2) 精益制造的基本原理-连续流(3) 精益制造的基本原理-多重任务 在面向产品的生产流程布局中,一名操作员工被赋予多台设备的操作。这需要
近几年,Apache Kylin作为一个高速的开源分布式大数据查询引擎正在迅速崛起。它充分发挥Hadoop、Spark、HBase等技术的优势,通过对超大规模数据集进行预计算,实现秒级甚至亚秒级的查询响应时间,同时提供标准SQL接口。目前,Apache Kylin已在全球范围得到了广泛应用,如百度、美团、今日头条、eBay等,支撑着单个业务上万亿规模的数据查询业务。在超高性能的背后,Cube是至关重要的核心。一个优化得当的Cube既能满足高速查询的需要,又能节省集群资源。本文将从多个方面入手,介绍如何通过优
对一个没有接触过分布式的小伙伴来说,可能还不太清楚Zookeeper在分布式应用中的重要性,今天有位从传统行业转型到互联网的小小伙伴问我,希望跟他讲讲Zookeeper什么,能解决什么问 题?今天,我给大家详细介绍一下。
布隆过滤器(Bloom Filter)于 1970 年由布隆提出的,是专门用于检索一个元素是否存在于一个集合中的算法。
数山有路,学海无涯:机器学习概论 ---- 机器学习的基本原理与基础概念,其要点如下: 机器学习是计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的学科; 根据输入输出类型的不同,机器学习
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术则主要用来解决海量数据的存储和分析。
本系列会针对 Java 中高级开发人员以及 JVM 运维人员,帮助大家深入理解 JVM 原理并能学以致用定位线上瓶颈,线上性能问题以及长期持续监控 JVM 。本系列针对 OpenJDK 11 以后的版本,同时也会帮助用户升级到 OpenJDK 11。本专栏会从快速上手 JFR,可视化查看 JFR 引入,之后会详细分析每一个 JFR 事件对应的背后的 JVM 原理以及源码,并且结合 Java 测试代码生成这些 JFR 事件帮助大家更好的理解这些事件产生的原因,以及需要如何去优化,然后会给出一下通过 JFR 定位线上问题的实例,最后,会通过给出线上 JFR 的推荐配置以及动态 JFR 配置与 Spring boot 结合的实例解决方案。
Zipkin是Twitter开源的调用链分析工具,目前基于springcloud sleuth得到了广泛的使用,特点是轻量,使用部署简单。
学习Python爬虫不仅充满趣味性,并垫基Python编程语言功底。可以说是入门IT行业的一条捷径,达到娱乐、学习二合一。喜欢看小说,搞笑图片?找工作还在一条一条筛选企业需求!做运营,做数据分析没有参考数据!业余时间想接个爬虫小需求挣个“零花钱”,爬虫帮你快速搞定。
基因芯片数据分析(六):DESeq2包的基本原理 我们接下来通过一个案例介绍利用edgeR进行差异分析。
HBase采用类LSM的架构体系,数据写入并没有直接写入数据文件,而是会先写入缓存(Memstore),在满足一定条件下缓存数据再会异步刷新到硬盘。为了防止数据写入缓存之后不会因为RegionServer进程发生异常导致数据丢失,在写入缓存之前会首先将数据顺序写入HLog中。如果不幸一旦发生RegionServer宕机或者其他异常,这种设计可以从HLog中进行日志回放进行数据补救,保证数据不丢失。HBase故障恢复的最大看点就在于如何通过HLog回放补救丢失数据。
大型语言模型(llm)已经变得越来越复杂,能够根据各种提示和问题生成人类质量的文本。但是他们的推理能力让仍然是个问题,与人类不同LLM经常在推理中涉及的隐含步骤中挣扎,这回导致输出可能在事实上不正确或缺乏逻辑。
以上就是mysql索引的基本原理,希望对大家有所帮助。更多mysql学习指路:Mysql
本文将介绍10种处理海量数据问题的常见方法,也可以说是对海量数据的处理方法进行一个简单的总结,希望对你有帮助。
Hive是基于Hadoop的数据仓库工具,可对存储在HDFS上的文件中的数据集进行数据整理、特殊查询和分析处理,提供了类似于SQL语言的查询语言–HiveQL,可通过HQL语句实现简单的MR统计,Hive将HQL语句转换成MR任务进行执行。 一、概述 1-1 数据仓库概念 数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反应历史变化(Time Variant)的数据集合,用于支持管理决策
本文主要讲解如何部署Kylin集群,采取多个Kylin实例共享HBase存储的模式,如果需要事先了解Kylin基本概念的朋友可以查看《Apache Kylin基本原理及概念》。
大数据是指其大小和复杂性无法通过现有常用的工具软件,以合理的成本,在可接受的时限内对其进行捕获、管理和处理的数据集。这些困难包括数据的收入、存储、搜索、共享、分析和可视化。大数据要满足三个基本特征(3V),数据量(volume)、数据多样性(variety)和高速(velocity)。数据量指大数据要处理的数据量一般达到TB甚至PB级别。数据多样性指处理的数据包括结构化数据、非结构化数据(视频、音频、网页)和半结构化数据(xml、html)。高速指大数据必须能够快速流入并且能得到快速处理。
本人3年开发经验、18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴、今日头条、滴滴等公司offer,岗位是Java后端开发,最终选择去了阿里巴巴。
领取专属 10元无门槛券
手把手带您无忧上云