启动OushuDB有两种方式,一种是通过”hawq start cluster”命令来启动整个集群,包括master和segment。启动哪些segment是由”/hawq-install-path/etc/slaves”中包含的节点确定的。
前面已经完成了HAWQ的安装部署,也了解了HAWQ的系统架构与主要组件,下面开始使用它。HAWQ作为Hadoop上的一个服务提供给用户,与其它所有服务一样,最基本的操作就是启动、停止、
与任何IT系统一样,为了保证HAWQ集群的高可用和高性能,需要进行一系列监控与维护活动。本篇讨论HAWQ推荐的运维与监控活动。 一、推荐的监控与维护任务 表1至表5是H
HAWQ,取自Hadoop With Query,这是一款原生Hadoop并行SQL引擎。同时作为一款面向企业的分析型数据库HAWQ有很多优良的特性,例如它完整兼容ANSI-SQL标准语法, 支持标准JDBC/ODBC连接,支持ACID事务特性,高性能,拥有比传统MPP数据库更先进的弹性执行引擎,可以秒级动态加减节点,拥有各种容错机制,支持多级资源和负载管理,提供Hadoop上PB级数据高性能交互式查询能力,并且提供对主要BI工具的描述性分析支持,以及支持预测型分析的机器学习库。 目前HAWQ属于Apach
在oushum1上,通过“hawq scp”命令统一安装其他节点的YUM源: hawq scp -f hostfile /etc/yum.repos.d/oushu-database-cent73.repo =:/etc/yum.repos.d
如果您用的是Oushu Lava公有云,或者私有云2.0+,您可以通过Lava UI自动部署OushuDB,详情请见: http://oushu.io/docs/ch/lava-...。
CDH 6.3.1集群主机: 172.16.1.124:NameNode、SecondaryNameNode 172.16.1.125:DataNode 172.16.1.126:DataNode 172.16.1.127:DataNode
一、HAWQ高可用简介 HAWQ作为一个传统数仓在Hadoop上的替代品,其高可用性至关重要。通常硬件容错、HAWQ HA、HDFS HA是保持系统高可用时需要考虑并实施的三个层次。另
该文章讲述了如何在社区中创建一个安全、可扩展的实时数据处理系统。通过使用Apache Flink,用户可以处理实时流数据,并在多个数据源上执行并行操作。该文还详细介绍了如何使用Flink的API和SQL查询引擎来处理数据,并讨论了流处理和批处理的概念以及如何在系统中进行配置。此外,文章还提供了关于Flink的实时数据处理、流处理、批处理等方面的详细信息,以及如何使用Flink进行数据处理和查询的最佳实践。
服务器启动后,还要经过一系列配置,才能被客户端程序所连接。本篇说明如何配置客户端身份认证,HAWQ的权限管理机制,HAWQ最常用的命令行客户端工具psql及与mysql命令行常用命令类
一、SQL on Hadoop 过去五年里,许多企业已慢慢开始接受Hadoop生态系统,将它用作其大数据分析堆栈的核心组件。尽管Hadoop生态系统的MapReduce组件是一个强大的典范,但随着时间的推移,MapReduce自身并不是连接存储在Hadoop生态系统中的数据的最简单途径,企业需要一种更简单的方式来连接要查询、分析、甚至要执行深度数据分析的数据,以便发掘存储在Hadoop中的所有数据的真正价值。SQL在帮助各类用户发掘数据的商业价值领域具有很长历史。 Hadoop上的SQL支持一开始是Apache Hive,一种类似于SQL的查询引擎,它将有限的SQL方言编译到MapReduce中。Hive对MapReduce的完全依赖会导致查询的很大延迟,其主要适用场景是批处理模式。另外,尽管Hive对于SQL的支持是好的开端,但对SQL的有限支持意味着精通SQL的用户忙于企业级使用案例时,将遇到严重的限制。它还暗示着庞大的基于标准SQL的工具生态系统无法利用Hive。值得庆幸的是,在为SQL on Hadoop提供更好的解决方案方面已取得长足进展。 1. 对一流的SQL on Hadoop方案应有什么期待 下表显示了一流的SQL on Hadoop所需要的功能以及企业如何可以将这些功能转变为商业利润。从传统上意义上说,这些功能中的大部分在分析数据仓库都能找到。
本文介绍了大数据处理框架Apache HAWQ的源起、设计目标、主要特性、系统架构、性能、适用场景以及与其他大数据处理框架的对比。HAWQ适用于需要高性能、低延迟、类似SQL的查询语言来处理大规模数据集的场景。HAWQ基于Apache Hadoop构建,并提供了类似于Hive的SQL查询语言。与Hive、SparkSQL、Impala等大数据处理框架相比,HAWQ在查询性能、运行时延迟、支持的数据类型、内置函数等方面都有显著的优势。
本文介绍了HAWQ在资源管理方面的一些问题以及解决方法。主要包括了以下几方面的问题:1.查询性能问题;2.拒绝查询资源请求;3.VMEM使用超高引起的查询取消;4.segment没在gp_segment_configuration中出现;5.调查标记为Down的segment;6.处理segment资源碎片。针对这些问题,文章提供了相应的解决方法。
量化是减少神经网络的内存占用和推理时间的有效方法。但是,超低精度量化可能会导致模型精度显着下降。解决此问题的一种有前途的方法是执行混合精度量化,其中更敏感的层保持更高的精度。但是,用于混合精度量化的搜索空间的层数是指数级的。HAWQ 提出了一个新颖的基于 Hessian 的框架,其目的是通过使用二阶信息来减少这种指数搜索空间。尽管有前途,但这项先前的工作具有三个主要局限性:
本文介绍了从Ambari迁移到HDP的步骤和注意事项。主要包括了升级前检查、配置迁移、数据迁移、应用迁移、高可用和性能优化、验证和测试、以及常见问题。
在HAWQ中创建一个表时,应该预先对数据如何分布、表的存储选项、数据导入导出方式和其它HAWQ特性做出选择,这些都将对数据库性能有极大影响。理解有效选项 的含义以及如何在数据库中使用它
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
由于hadoop依赖于特定版本的snappy,请先卸载snappy确保安装的顺利进行:
一、基本操作 1. INSERT 在常用的增删改查数据库操作中,HAWQ仅支持INSERT和SELECT两种,不支持UPDATE和DELETE,这主要是因为HDFS是一个只能追加数据而
本文介绍了HAWQ中的一些基本概念和操作,包括创建表、插入数据、删除表和视图、查看表定义、查看视图定义、表的存储、表的清理以及过程语言。同时,还介绍了如何通过HAWQ访问HDFS文件系统。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80194003
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80017447
一、MADlib简介 MADlib是Pivotal公司与伯克利大学合作开发的一个开源机器学习库,提供了多种数据转换、数据探索、统计、数据挖掘和机器学习方法,使用它能够简易地对结构化数据
故障切换 如果主节点发生故障, 日志同步将停止。此时必须激活备用主节点。激活备用主节点后, Oushu Database 将重建最后一成功提交的事务时的状态。 手动激活备用主节点
即便对SELECT等数据库查询语句已经很熟悉了,但HAWQ里的查询有其自己的特点,还是需要研究一下。 一、HAWQ的查询处理流程 理解HAWQ的查询处理过程有助于写出更
一、为什么还需要备份 HAWQ作为一个数据库管理系统,备份与恢复是其必备功能之一。HAWQ的用户数据存储在HDFS上,系统表存储在master节点主机本地。HDFS上的每个数据块缺省自
森哥大作,接上一篇:SQL on Hadoop技术分析(一) SQL on Hadoop 技术分析(二) 本篇继续分析SQL on Hadoop的相关技术,本次分析的重点是查询优化器(技术上的名词叫SQL Parser),在SQL on Hadoop技术中有着非常重要的地位,一次查询SQL下来,SQL Parser分析SQL词法,语法,最终生成执行计划,下发给各个节点执行,SQL的执行的过程快慢,跟生成的执行计划的好坏,有直接的关系,下面以目前业界SQL onHadoop 使用的比较多的组件Impala、H
该文摘要总结:本文主要介绍了一个技术社区在内容编辑岗位上的工作内容和职责,包括内容编辑的主要工作、对作者提交内容的规范要求、对外部社区合作方的对接、对作者社区贡献的量化评估、对技术社区趋势的洞察和分析、以及从社区角度对作者进行培养等。
OushuDB是由Apache HAWQ创始团队基于HAWQ打造的新一代数据仓库(New Data Warehouse)。该产品采用了存储与计算分离技术架构,具有MPP的所有优点,还具有弹性,支持混合工作负载和高扩展性等优点。作为HAWQ的增强版,OushuDB遵循ANSI-SQL标准,兼容Oracle、Greenplum Database和PostgreSQL,提供PB级数据交互式查询能力,提供对主要BI工具的描述性分析和AI支持。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
本文介绍了如何使用hawq-export工具将Hive数据导出为JSON格式,并介绍在HBase和HDFS上存储JSON格式数据的方法。同时,本文还介绍了在hawq-import工具中如何将JSON数据导入到Hive表中。
说明:每个节点都需要配置/etc/hosts,上表中的主机名称需要在每台机器的/etc/hosts中追加 192.168.1.11 oushum1192.168.1.12 oushum2192.168.1.21 oushus1192.168.1.22 oushus2
内容来源:2017 年 11 月 18 日,北京偶数科技创始人兼CEO常雷在“第七届数据技术嘉年华”进行《云数据库的本质》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
在许多应用程序中部署神经网络时,模型大小和推理速度/功率已成为主要挑战。解决这些问题的一种有前途的方法是量化。但是,将模型统一量化为超低精度会导致精度显着下降。一种新颖的解决方案是使用混合精度量化,因为与其他层相比,网络的某些部分可能允许较低的精度。但是,没有系统的方法来确定不同层的精度。对于深度网络,蛮力方法不可行,因为混合精度的搜索空间在层数上是指数级的。另一个挑战是在将模型量化到目标精度时用于确定逐块微调顺序复杂度是阶乘级别的。本文介绍了 Hessian AWare 量化(HAWQ),这是一种解决这些问题的新颖的二阶量化方法。HAWQ 根据Block块的 Hessian 最大特征值选择各层的相对量化精度。而且,HAWQ基于二阶信息为量化层提供了确定性的微调顺序。本文使用 ResNet20 在 Cifar-10 上以及用Inception-V3,ResNet50 和 SqueezeNext 模型在 ImageNet 上验证了方法的结果。将HAWQ 与最新技术进行比较表明,与 DNAS 相比,本文在 ResNet20 上使用 8 倍的激活压缩率可以达到相似/更好的精度,并且与最近提出的RVQuant和HAQ的方法相比,在ResNet50 和 Inception-V3 模型上,当缩小 14% 模型大小的情况下可以将精度提高 1%。此外,本文证明了可以将 SqueezeNext 量化为仅 1MB 的模型大小,同时在 ImageNet 上实现 Top-1 精度超过 68%。
伴随着技术的不断发展与进步,我们会接触和使用越来越多的数据源。从经久不衰的MySQL、Oracle、SQLserver、DB2等关系数据库,到方兴未艾的MongoDB、Redis、Cassandra等NoSQL产品,再到屡见不鲜的各种大数据组件,如Hive、Impala、HBase、Phoenix、Spark,以及林林总总的时序数据库、全文检索系统、图数据库等等。如果有一个Client,能够连接所有这些数据源,并将常规开发环境(如SQL脚本)都集中在一个GUI中,则必将为技术人员节省大量寻找并熟悉相应工具的时间,从而提高工作效率。正所谓工欲善其事,必先利其器,本篇介绍的DBeaver正是这样一款工具软件。
在上一章节《你需要的不是实时数仓 | 你需要的是一款强大的OLAP数据库(上)》,我们讲到实时数仓的建设,互联网大数据技术发展到今天,各个领域基本已经成熟,有各式各样的解决方案可以供我们选择。
背景 Hadoop的诞生是划时代的数据变革,但关系型数据库时代的存留也为Hadoop真正占领数据库领域埋下了许多的障碍。对SQL(尤其是PL/SQL)的支持一直是Hadoop大数据平台在替代旧数据时代亟待解决的问题。Hadoop对SQL数据库的支持度一直是企业用户最关心的诉求点之一,也是他们选择的Hadoop平台的重要标准。 自打Hive出现之后,SQL onHadoop相关系统已经百花齐放,速度越来越快,功能也越来越齐全。目前比较主流的有Impala,Spark SQL,HAWQ,Tez,Drill,
以上是在大数据处理方面常用的四种技术原理, 上面这些处理数据的方式极大程度的提高了单位时间内数据处理的能力, 但是其还是没有摆脱数据量和查询时间的线性关系。 于是在OLAP处理方式上, 我们多了一种:
该文介绍了在数据库中如何使用分区表来提高查询性能和节省存储空间。文章首先介绍了分区表的概念和作用,然后详细描述了如何创建分区表、使用SQL语句查询分区表以及管理分区表。此外,文章还提供了在HAWQ中实现分区滚动升级的方法,并通过实例展示了该方法的实现过程。
OLAP的标准概念叫作“联机分析处理系统”,与之对应的是OLTP“联机事务处理系统”。OLTP对于事务性的要求非常高,常用于银行、证券等系统,但运行速度相对有限。有感于此,关系数据库之父Codd便在1993年提出了OLAP的概念,认为用户的很多决策需要依赖大量的计算与多维的分析才能解决,并作为一类单独的产品,与OLTP区分开来。
场景描述:今年有个现象,实时数仓的建设突然就被大家所关注。我个人在公众号也写过和转载过几篇关于实时数据仓库建设的文章和方案。
配置备用主节点 可以在 Oushu Database 的安装过程中配置备用主节点, 也可以向现有集群中添加。 安装过程中配置备用主节点 请参见 「安装OushuDB」- http://www.oushu.com/docs/ch/... 中有关 oushum2 的配置。 向现有群集添加备用主节点
替换JAVA PXF,性能高数倍,无需安装部署PXF额外组件,极大简化了用户安装部署和运维
作者:常雷博士,偶数科技创始人兼CEO。北京大学计算机系博士,曾任EMC高级研究员、EMC/Pivotal研发部总监,长期专注于AI和大数据领域。
开源大数据OLAP组件,可以分为MOLAP和ROLAP两类。ROLAP中又可细分为MPP数据库和SQL引擎两类。对于SQL引擎又可以再细分为基于MPP架构的SQL引擎和基于通用计算框架的SQL引擎:
领取专属 10元无门槛券
手把手带您无忧上云