☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreamSets ]
☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreaSets ]
对于数据仓库,大数据集成类应用,通常会采用ETL工具辅助完成。ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、交互转换(transform)、加载(load)至目的端的过程。当前的很多应用也存在大量的ELT应用模式。常见的ETL工具或类ETL的数据集成同步工具很多,以下对开源的Sqoop、dataX、Kettle、Canal、StreamSetst进行简单梳理比较。
1. (误解)Hadoop什么都可以做 (正解)当一个新技术出来时,我们都会去思考它在各个不同产业的应用,而对于平台的新技术来说,我们思考之后常会出现这样的结论“这个好像什么都能做”,然而,更深入的去想,你就会发现“好像什么都需要重头做”。对于Hadoop,我常喜欢举Database来当例子。 三十年前数据库(Database)刚出来时,上面并没有什么现成的应用方案(Application),所以厂商在销售的过程中常需要花很多的时间去告诉客户说,如果今天你有了这个数据库,你就可以做什么什么的应用,而看起来的
DataBand(数据帮),快速采集清洗,数据分析,预测分析,人工智能赋能服务,是一站式的大数据平台。我们致力于通过提供智能应用程序、数据分析和咨询服务来提供最优解决方案
大数据时代,数据过剩,人才短缺,越来越多的IT专业人士希望能够进入充满机遇的大数据领域,但是,到底哪些具体的大数据专业岗位和人才最为吃香呢?人力资源公司Kforce近日发布了一份报告根据IT职业薪酬水平给出了2014年最热门的十大大数据工作职位(年薪): 一、ETL开发者(11-13万美元) 随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。 ETL软件行业相对成熟,相关岗位的工作生命周期比较长
作者:所罗伯·斯里瓦斯塔瓦(Saurabh Shrivastava)、内拉贾利·斯里瓦斯塔夫(Neelanjali Srivastav)
我们一直在追赶续期的迭代。在过去十年中,我们看到了数据处理技术突破性技术进步后的突破性进展,并且在2015年我们已经到了Spark的时代。
最近一周,硅谷的明星创业公司Palantir完成了最新一轮4.5亿美金的融资,估值超过200亿美金。大数据,以及之后的数据挖掘和智能分析,让Palantir拿到大笔政府、军队合同。坊间甚至传闻说当年拉登被被抓获的过程中,Palantir的数据分析乃幕后英雄,这大数据,可真厉害。 毫无疑问,大数据的热潮在未来的一段时间会继续升温。然而,「大数据」究竟需要哪些职位?这些职位有什么发展方向?需要什么技能? 大家却未必清楚。 那么今天包子面试培训就带大家对大数据就业市场一探究竟。 薪水有多高? 据美权威网站pays
公司要搞数据平台,首当其冲的是把旧库的数据导入到新库中,原本各种数据库大部分都提供了导入导出的工具,但是数据存储到各个地方,mongdb,hbase,mysql,oracle等各种各样的不同数据库,同步起来头都大了
ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,所以了解并掌握一种etl工具的使用,必不可少。最近用kettle做数据处理比较多,所以也就介绍下这方面内容,这里先对比下几款主流的ETL工具。
ETL(Extract-Transform-Load)技术是数据集成领域的核心组成部分,广泛应用于数据仓库、大数据处理以及现代数据分析体系中。它涉及将数据从不同的源头抽取出来,经过必要的转换处理,最后加载到目标系统(如数据仓库、数据湖或其他分析平台)的过程。以下是ETL技术栈的主要组成部分和相关技术介绍:
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,是数据仓库的生命线。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51757009
随着大数据的趋势引起的越来越多的重视,各大企业对与大数据相关高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业发展机遇。 目前,大数据方面的工作人员主要有三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。 大数据系统研发工程师、 大数据应用开发工程师 数据分析师 从企业方面来说,大数据人才大致可以分为产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面
Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
组织在构建自己专属的技术栈时,会使用到各种不同的相似技术。但也存在一些趋势,如果你正在组建一个新的团队、组织或公司的时候,一开始你可能需要效仿某个现成的技术栈,再依据需求来构建自己的技术栈,还需要对一些过时的技术进行升级。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51757018
我在2017年写了一本名为《Hadoop构建数据仓库实践》的书。在这本书中,较为详细地讲解了如何利用Hadoop(Cloudera's Distribution Including Apache Hadoop,CDH)生态圈组件构建传统数据仓库。例如,使用Sqoop从关系数据库全量或增量抽取数据到Hadoop系统,使用Hive进行数据转换和装载处理等等。作为进阶,书中还说明了数据仓库技术中的渐变维、代理键、角色扮演维度、层次维度、退化维度、无事实事实表、迟到事实、累计度量等常见问题在Hadoop上的处理。它们都是通过Hive SQL来实现的,其中有些SQL语句逻辑复杂,可读性也不是很好。
如今参加大数据培训的人越来越多,因此大家也在关心从事大数据工作后的职业方向怎么样,都有什么职位。本篇文章小编就和大家分享下从事大数据工作的方向及职位。
Hadoop做数仓,不是啥子新鲜概念,各家Hadoop厂商都有自己的方案。Hortonworks这两天突然官方宣布与Jethro一起来玩EDW,Fayson也没搞太懂。从Jethro的文档看上去应该很早就支持CDH5.9/5.10和HDP2.3/2.4了。参考:
整理了当年使用过的一些,大数据生态圈组件的特性和使用场景,若有不当之处,请留言斧正,一起学习成长。
oozie job -D inpath=/weblog/input -D outpath=/weblog/outpre-config weblog/job.properties -run
0x00 前言 数据仓库体系里面的主要内容也写的差不多了,现在补一点之前遗漏的点。这一篇就来聊一下 ETL。 文章结构 先聊一下什么是 ETL。 聊一下大致的概念和一般意义上的理解。 聊一聊数据流是什么样子。因为 ETL 的工作主要会体现在一条条的数据处理流上,因此这里做一个说明。 举个具体的例子来说明。 0x01 什么是 ETL ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过
大数据的日益增长,给企业管理大量的数据带来了挑战的同时也带来了一些机遇。下面是用于信息化管理的大数据工具列表: 1.ApacheHive Hive是一个建立在hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。 2JaspersoftBI套件 Jaspersoft包是一个通过数据库列生成报表的开源软件。
本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战,如:
之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。 BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。 伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,Extraction Transformation Loading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足
问题导读: Hadoop数据采集框架都有哪些? Hadoop数据采集框架异同及适用场景?
企业级的大数据平台,Hadoop至今仍然占据重要的地位,而基于Hadoop去进行数据平台的架构设计,是非常关键且重要的一步,在实际工作当中,往往需要有经验的开发工程师或者架构师去完成。今天的大数据开发分享,我们就来讲讲,基于Hadoop的数仓设计。
通过观察原始数据形式,可以发现,视频可以有多个所属分类,每个所属分类用&符号分割,且分割的两边有空格字符,同时相关视频也是可以有多个元素,多个相关视频又用“\t”进行分割。为了分析数据时方便对存在多个子元素的数据进行操作,我们首先进行数据重组清洗操作。即:将所有的类别用“&”分割,同时去掉两边空格,多个相关视频id也使用“&”进行分割。
Hadoop为每个作业维护若干内置计数器,以描述多项指标。 比如说,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量。
数据湖引擎是一种开源软件解决方案或云服务,它通过一组统一的api和数据模型为分析工作负载的各种数据源提供关键功能。数据湖引擎解决了快捷访问、加速分析处理、保护和屏蔽数据、管理数据集以及提供跨所有数据源的统一数据目录等方面的关键需求。
掌握Linux必备知识,熟悉Python的使用与爬虫程序的编写,搭建Hadoop(CDH)集群,为大数据技术学习打好基础。
本文将深入探讨Sqoop的使用方法、优化技巧,以及面试必备知识点与常见问题解析,助你在面试中展现出深厚的Sqoop技术功底。
现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?
原文地址:https://dzone.com/articles/big-data-architecture-best
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,和架构,你不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
在可靠性、准确性和性能方面,人工智能和机器学习都严重依赖于大型设备。因为数据池越大,你就越能对模型进行训练。这就是为什么重要的数据平台能够高效地处理不同的数据流和系统,而不管数据的结构(或缺乏)、数据
ELT的过程是,在抽取后将结果先写入目的地,然后利用数据库的聚合分析能力或者外部计算框架,如Spark来完成转换
本文介绍了大数据时代,网站日志分析对于网站运营的重要性,并介绍了一般的大数据日志分析系统架构,包括数据采集、数据预处理、数据仓库、数据导出、数据可视化和流程调度等模块。同时,本文还介绍了一个具体的大数据处理案例,包括使用Flume和Hive等开源框架进行网站日志分析的过程,以及使用Hadoop、Sqoop等工具进行数据处理和可视化的技术细节。
原文地址:https://dzone.com/articles/bigquery-data-warehouse-clouds
ETL产品的选型工作一直以来都是困扰架构师的一块心病,国外付费产品用不起,国外免费产品学习成本高、不易实施。
ETL 和 ELT 有很多共同点,从本质上讲,每种集成方法都可以将数据从源端抽取到数据仓库中,两者的区别在于数据在哪里进行转换。 接下来,我们一起详细地分析一下 ETL 和 ELT各自的优缺点,看看在你们现在的业务中用哪种方式处理数据比较合适。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
1. 配置 /opt/hadoop-2.7.4/etc/hadoop/core-site.xml
Hive是一个构建在Hadoop上的数据仓库框架。最初,Hive是由Facebook开发,后来移交由Apache软件基金会开发,并作为一个Apache开源项目。
大数据平台是对海量结构化、非结构化、半机构化数据进行采集、存储、计算、统计、分析处理的一系列技术平台。大数据平台处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据仓库工具无法处理完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的各类技术。
作为一名电影爱好者,我阅片无数,有些片子还经常翻来覆去看个好几遍。小时候因为这事儿,没少被我妈抓耳朵,“看过的片子为啥还要倒二遍?”我也说不上来,就是单纯的爱看。
令人惊讶的是,Hadoop在短短一年的时间里被重新定义。让我们看看这个火爆生态圈的所有主要部分,以及它们各自具有的意义。 对于Hadoop你需要了解的最重要的事情就是,它不再是原来的Hadoop。 这
领取专属 10元无门槛券
手把手带您无忧上云