问题导读 1.你认为Hadoop集群的搭建有什么共同点? 2.低版本升级高版本,你是如何操作的? Hadoop集群的搭建除了Hadoop1与Hadoop2的集群搭建有所区别之外,Hadoop2集群的搭建大部分都是相似的。 1.需要安装ssh,达到无密码互通 无密码互通,很多这里都遇到了问题,这里提供两篇帖子。 linux(ubuntu)无密码互通、相互登录高可靠文档 CentOS6.4之图解SSH无验证双向登陆配置 2.修改hostname hostname有临时修改于永久修改,详细见
在本系列博客中。为了解析一些概念、解析一些架构、代码測试。搭建了一个实验平台。例如以下图所看到的:
Hadoop集群环境搭建是很多学习hadoop学习者或者是使用者都必然要面对的一个问题,网上关于hadoop集群环境搭建的博文教程也蛮多的。对于玩hadoop的高手来说肯定没有什么问题,甚至可以说事“手到擒来”的事情,但对于hadoop的初学者来说,hadoop集群环境的搭建着实压力不小。
Hadoop由Apache基金会开源,是一个分布式的储存与计算平台。目前Hadoop已经更新到了3.x以上的版本,相比于Hadoop2.x,Hadoop3增加了更多便于开发的新特性。
修改JAVA_HOME:export JAVA_HOME指向自己的Java安装目录下的default目录
关于时下最热的技术潮流,无疑大数据是首当其中最热的一个技术点,关于大数据的概念和方法论铺天盖地的到处宣扬,但其实很多公司或者技术人员也不能详细的讲解其真正的含义或者就没找到能被落地实施的可行性方案,更有很多数据相关的项目比如弄几张报表,写几个T-SQL语句就被冠以“大数据项目”,当然了,时下热门的话题嘛,先把“大数据”帽子扣上,这样才能显示出项目的高大上,得到公司的重视或者高层领导的关注。
hbase和hadoop一样也分为单机版、伪分布式版和完全分布式集群版本,这篇文件介绍如何搭建完全分布式集群环境搭建。 hbase依赖于hadoop环境,搭建habase之前首先需要搭建好hadoop的完全集群环境,因此看这篇文章之前需要先看我的上一篇文章:hadoop分布式集群搭建。本文中没有按照独立的zookeeper,使用了hbase自带的zookeeper。 环境准备 hbase软件包: http://mirror.bit.edu.cn/apache/hbase/1.3.1/hbase-1.3.1-
离线数据分析平台实战——100HBase和MapReduce整合 环境搭建 搭建步骤: 在etc/hadoop目录中创建hbase-site.xml的软连接。在真正的集群环境中的时候,hadoop运行mapreduce会通过该文件查找具体的hbase环境信息。 将hbase需要的jar包添加到hadoop运行环境中,其中hbase需要的jar就是lib文件夹下面的所有*.jar文件。 使用hbase自带的server jar测试是否安装成功。 环境搭建-软连接创建 命令:ln -s /home/hadoop
零基础学习hadoop,没有想象的那么困难,也没有想象的那么容易。从一开始什么都不懂,到能够搭建集群,开发。整个过程,只要有Linux基础,虚拟机化和java基础,其实hadoop并没有太大的困难。下面整理一下整个学习过程,给大家一个参考。
Hadoop是一个分布式系统基础架构,在大数据领域被广泛的使用,它将大数据处理引擎尽可能的靠近存储,Hadoop最核心的设计就是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算。以下就是搭建教育直播源码中Hadoop运行环境的方法。
---- 环境准备 服务器集群 我用的CentOS-6.6版本的4个虚拟机,主机名为hadoop01、hadoop02、hadoop03、hadoop04,另外我会使用hadoop用户搭建集群(生产环境中root用户不是可以任意使用的) 关于虚拟机的安装可以参考以下两篇文章: 在Windows中安装一台Linux虚拟机 通过已有的虚拟机克隆四台虚拟机 服务器集群中已经搭建了hadoop集群(完全分布式和HA集群都可以) 参考 Hadoop完全分布式集群搭建 Hadoop高可用(HA)集群
CentOS安装和配置Hadoop2.2.0 http://www.linuxidc.com/Linux/2014-01/94685.htm
这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 Worker 服务。同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop002 和 hadoop003 上分别部署备用的 Master 服务,Master 服务由 Zookeeper 集群进行协调管理,如果主 Master 不可用,则备用 Master 会成为新的主 Master。
文|指尖流淌 前言 关于时下最热的技术潮流,无疑大数据是首当其中最热的一个技术点,关于大数据的概念和方法论铺天盖地的到处宣扬,但其实很多公司或者技术人员也不能详细的讲解其真正的含义或者就没找到能被落地实施的可行性方案,更有很多数据相关的项目比如弄几张报表,写几个T-SQL语句就被冠以“大数据项目”,当然了,时下热门的话题嘛,先把“大数据”帽子扣上,这样才能显示出项目的高大上,得到公司的重视或者高层领导的关注。 首先,关于大数据的概念或者架构一直在各方争议的背景下持续的存在着。目前,关于大数据项目可以真正
关于hadoop的分享此前一直都是零零散散的想到什么就写什么,整体写的比较乱吧。最近可能还算好的吧,毕竟花了两周的时间详细的写完的了hadoop从规划到环境安装配置等全部内容。写过程不是很难,最烦的可能还是要给每一步配图,工程量确实比较大。
前几天写了文章“Hadoop 集群搭建”之后,一个朋友留言说希望介绍下如何使用Docker部署,这个建议很好,Docker不仅在生产环境威力巨大,对于我们在自己电脑中搭建学习实验环境更是非常便利 搭建一个集群环境时需要多台服务器,对于我们个人,这通常是个门槛,需要使用虚拟机,安装操作系统,然后运行起来多个虚机 安装操作系统是个不太轻松的任务,并且运行多个虚机对个人电脑性能也有一定要求,这些门槛影响了很多小伙伴的实践积极性 使用Docker的话就简单了,不用安装操作系统,直接下载一个镜像,如centos,这样
1、时间:2021-2022年第一学期第15-16周。上午:8:00-11:30,下午:2:00-5:30。设计周的最后两天为验收时间,每个小组要求对课程设计任务提交设计报告。 2、地点:机房10#A301,机房10#A302,机房10#A303,以及安排的相关机房
Hadoop搭建流程网上有很多,以下是我在搭建Hadoop伪分布式环境是遇到的一些比较菜鸟的问题。
在Hadoop1.X版本中使用单个NameNode来管理所有的DataNode的元数据,一旦NameNode节点发生故障将导致整个集群不可用,而且必须手动恢复NameNode节点才能够正常提供服务。基于以上致命的缺点,Hadoop2.X提出了HA(High Available)来改进单点故障;另外,通过使用Zookeeper的分布式通知协调功能实现HA的Failover(故障自动转移),而无需人工介入。下面开始介绍HA和Failover的安装配置。
大数据是基于集群的分布式系统。所谓集群是指一组独立的计算机系统构成的一多处理器系统,它们之间通过网络实现进程间的通信,让若干台计算机联合起来工作(服务),可以是并行的,也可以是做备份。
搭建大数据环境是一个广泛讨论的主题,它涉及到许多不同的技术和工具,用于存储、处理和分析大规模数据。本文将介绍如何搭建大数据环境,包括步骤、所需的软件以及一些示例代码,以帮助你入门大数据技术。
参照Apache的官方文档,Hadoop2还是蛮好搭建的,但是搭建好后,MapReduce的JobHistory页面却没法进去,这是因为JobHistory没有配置正确或者服务没有启动起来。本文将梳理伪分布模式的搭建过程,并给出配置文档,让你不再为搭建这些过程烦恼。
生活离不开水,正如现代生活离不开数据。欢迎学习Spark框架的知识体系。今天主要介绍Spark框架的环境搭建。
在《大数据之脚踏实地学07--搭建Hadoop集群【1】》中,讲解的是虚拟机的配置(包括网络设置、主机名修改和克隆等),文中我们在VMware中虚拟了3台计算机,1台用作主节点(master),2台用作从节点(slaves)。本文将继续分享有关Hadoop环境的安装和配置(包括HDFS系统、Map-Reduce计算框架已经Yarn调度器)。
上一篇介绍了伪分布式集群的搭建,其实在我们的生产环境中我们肯定不是使用只有一台服务器的伪分布式集群当中的。接下来我将给大家分享一下全分布式集群的搭建!
“学习hadoop需要什么基础”这已经不是一个新鲜的话题了,随便上网搜索一下就能找出成百上千篇的文章在讲学习hadoop需要掌握的基础。再直接的一点的问题就是——学Hadoop难吗?用一句特别让人无语的话回答就是:难不会,会不难!
Hadoop是Apache的一个伪分布式文件系统的开源项目。作者名为Doug Cutting,Hadoop项目是他通过Google的发布三篇论文所启发,分别为GFS、MapReduce和BigTable。Hadoop最受欢迎是致力于搜索大量数据进行分类工具。
好多人问我,这种「基于大数据平台的xxxx」的毕业设计要怎么做。这个可以参考之前写得关于我大数据毕业设计的文章大数据方向毕业设计,选题和实现思路。这篇文章是将对之前的毕设进行优化。
本章将从几则故事说起,让大家明白大数据是与我们的生活息息相关的,并不是遥不可及的,还会介绍大数据的特性,以及大数据对我们带来的技术变革,大数据处理过程中涉及到的技术
前面只是大概介绍了一下Hadoop,现在就开始搭建集群了。我们下尝试一下搭建一个最简单的集群。之后为什么要这样搭建会慢慢的分享,先要看一下效果吧!
文|指尖流淌 前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本篇的正题。 技术准备 VMware虚拟机、CentOS 6.8 64 bit 安装流程 我们先来回顾上一篇我们完成的单节点的Hadoop环境配置,已经配置了一个CentOS 6.8 并且完成了java运行环境的搭建,Hosts文件的配置、计算机名等诸多细节。 其实完成这一步之后我们就已经完成了
Apache Spark是专门为大规模数据处理而设计出来的计算引擎,相对于Hadoop MapReduce将结果保存在磁盘中,Spark使用了内存保存中间结果,能在数据尚未写入磁盘时在内存中进行运算。Spark只是一个计算框架,不像Hadoop一样包含了分布式文件系统和完备的调度系统,如果需要使用Spark,需要搭载其他文件系统例如用HDFS和更成熟的调度系统进行配合更好的进行计算工作。
很多朋友对大数据行业心向往之,却苦于不知道该如何下手。作为一个零基础大数据入门学习者该看哪些书?今天给大家推荐一位知乎网友挖矿老司机的指导贴,作为参考。
摘要:本文将详细介绍如何使用IBCS虚拟专线搭建Hadoop集群,同时阐述IBCS虚拟专线在提高Hadoop集群性能和稳定性方面的优势。
学习大数据,核心重点就是对于专业技术的掌握,我们判断一个机构的课程是否具备足够的专业度,也往往是从这些核心技术体系的课程规划来看的。以Hadoop来说,这是大数据学习当中必不可少的部分。今天大数据学习分享,我们来聊聊Hadoop学习路线。
为了学习hadoop和spark,开始了搭建这两的心酸路。下面来介绍下我是如何搭建的,大家可以模仿下,若是有遇到问题,请留言哟。 之前搭建成功过,后来冒出问题,一直没解决掉。这次算是搞定了。 hadoop 搭建 版本hadoop-2.7.1.tar.gz,去官网下载就可以。解压到ubuntu下hadoop用户的目录下。 第一步、配置java环境 去http://www.oracle.com/technetwork/java/javase/downloads/index.html 下载合适你电脑系统
版本hadoop-2.7.1.tar.gz,去官网下载就可以。解压到ubuntu下hadoop用户的目录下。
在学习大数据的情况下免不了自己搭建一个hadoop环境,但是使用虚拟机在自己的电脑上启动一个集群环境会很吃机器的资源,所以我们使用docker来进行搭建大数据的集群环境。同时docker搭建hadoop环境可以省去很多重复的步骤。
Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。它的目的是从单一的服务器扩展到成千上万的机器,将集群部署在多台机器,每个机器提供本地计算和存储。Hadoop 框架最核心的设计是 HDFS 和 MapReduce。
• Hadoop是由Apache基金会开源的 分布式储存+分布式计算平台提供分布式的储存和计算
在前几篇的文章中分别就虚拟系统安装、LINUX系统安装以及hadoop运行服务器的设置等内容写了详细的操作教程,本篇分享的是hadoop的下载安装步骤。
前一篇文章介绍了Hadoop2.0(hadoop2.0架构,具体版本是hadoop2.2.0)的安装和最基本的配置(见 http://www.linuxidc.com/Linux/2014-05/101173.htm ),并没有配置HA(High Avalability,高可用性),接下来的文章中会介绍hadoop2.0HA的配置。在介绍hadoop2.0的HA配置之前,本文先介绍hadoop2.0HA的基本原理和2种方式。 1 概述 在hadoop2.0之前,namenode只有一个,存在单点问题(虽
在Hadoop和Spark集群搭建好了以后,如果我们需要向集群中发送、获取文件,或者是执行MapReduce、Spark作业,通常是搭建一个外围的、集群的客户端,在这个客户端上进行操作。而不是直接在集群的NameNode或者DataNode上进行。此时,集群和客户端的结构如下图所示(简化图,没有考虑NameNode的高可用),本文将介绍如何快速搭建一个集群客户端(有时也叫gateway)。
前言 前面我们主要分析了搭建Hadoop集群所需要准备的内容和一些提前规划好的项,本篇我们主要来分析如何安装CentOS操作系统,以及一些基础的设置,闲言少叙,我们进入本篇的正题。 技术准备 VMware虚拟机、CentOS 6.8 64 bit 安装流程 因为我的笔记本是Window7操作系统,然后内存配置,只有8G,内存配置太低了,当然为了演示,我会将Hadoop集群中的主节点分配2GB内存,然后剩余的三个节点都是1GB配置。 所有的节点存储我都设置为50GB。 在安装操作系统之前,我们需要提前规划
本课程目标 本课程有以下几个目标: 第一:对hadoop没有了解的学员来说,可以帮助其了解在一般工作中hadoop的基本用法,以及对如何用hadoop有一定的了解。 第二:对hadoop有了解的学员来说,其一可以帮助学员加深对hadoop的了解,其二可以让学员对hadoop的实际应用场景有一个比较深入的了解。 Hadoop的主要应用场景 这里说的hadoop指的是以hadoop为中心的hadoop生态圈。 场景1:数据分析平台 场景2:推荐系统 场景3:业务系统的底层存储系统 场景4:业务监控系统
Flink 支持使用多种部署模式来满足不同规模应用的需求,常见的有单机模式,Standalone Cluster 模式,同时 Flink 也支持部署在其他第三方平台上,如 YARN,Mesos,Docker,Kubernetes 等。以下主要介绍其单机模式和 Standalone Cluster 模式的部署。
这里搭建一个 3 节点的 HBase 集群,其中三台主机上均为 Region Server。同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop002 上部署备用的 Master 服务。Master 服务由 Zookeeper 集群进行协调管理,如果主 Master 不可用,则备用 Master 会成为新的主 Master。
大数据平台的开发环境搭建,我们前面已经说过了,需要搭建Hdfs,Yarn,Spark,HBase,Hive,ZK等等,在开发环境下搭建是用于开发测试的,全部部署在VM 虚拟机里面,小数据量小运算量还可以,数据量运算量一旦上来,虚拟机是玩不转的,这就牵涉到生产环境的Hadoop的生态搭建,难道也需要我们一步一步来搭建吗? 几台还可以,那么上百台呢? 难道也需要一台台搭建吗? 显然不可以,有没有什么好的Hadoop生态的搭建工具呢? 国外有俩家企业做了这些事,hortonworks公司推出的Ambari+HDP套件 和 Cloudrea公司推出的 CM+CDH 套件,不过这俩家公司 18年底合并了,不过这并不影响我们的使用。 2. CM+CDH介绍 CM是Cloudrea Manager的简称,是Cloudrea 提供的生产环境的Hadoop 生态部署工具,工具套件为CM+CDH,CM负责监控动态管理及部署Hadoop生态服务,CDH里面包含了绝大多数的Hadoop生态中的服务,包含Hdfs,Yarn,ZK,Hive,Hbase,Flume,Sqoop,Spark等。整体上与前面说所得Ambari + HDP类似。 CM+CDH有免费版和收费版,收费版当然功能更加强悍,比如支持回滚,滚动升级,支持Kerberos,SAML/LDAP支持,SNMP支持,自动化备份和灾难恢复,不过在我们看来,免费版已经够我们使用了。 这里简单和Ambari + HDP对已一下,CDH在部署Hadoop生态上,整体与HDP类似,通过WEB端动态部署Hadoop生态, Name Web Server Tools hortonworks Ambari HDP HDP-Util Cloudrea CM CDH CDH-Util CM+CDH套件组成 CM:WEB应用程序,后台为Ambari Server,负责与HDP部署的集群工作节点进行通讯,集群控制节点包括Hdfs,Spark,Zk,Hive,Hbase等等。 CDH:HDP包中包含了很多常用的工具,比如Hadoop,Hive,Hbase,Spark等 CDH-Util:包含了公共包,比如ZK等一些公共组件。 3. CM+CDH 部署
Hadoop2.0的架构和1.0完全不一样,在安装配置上和1.0也有很大的不同,譬如配置文件的目录不一样了,还有要对yarn进行配置,这个在1.0是没有的。很多人第一次接触hadoop2.0的时候,会很不适应,而且官方的文档也有些写得不太清楚的地方,也有些错误。笔者在初次安装hadoop2.0的时候,看着官方的文档,中间也出现过很多问题。为了帮助大家很快的部署上hadoop2.0,笔者写了这篇文章。这篇文章主要就是介绍一个hadoop2.0的一个最基本最简单的配置,目的就是尽快的让hadoop2.0在机器上
领取专属 10元无门槛券
手把手带您无忧上云