机器之心报道 机器之心编辑部 人类玩家游戏还没玩通,AI 已经能造个游戏了。 侠盗猎车手 5(GTA5)是一款经典的动作冒险游戏,深受玩家欢迎,多个研究团队曾为它推出补丁,以使其具有更加逼真的游戏质感。 在第三方不断为 GTA5 推出补丁的同时,许多玩家高呼:「GTA6 什么时候能出啊」。我们无法揣摩 R 星的思路,GTA6 目前尚未发布,不过有一款 AI 独立开发的「GTA5」,你可以试试。 它的名字叫做「GAN Theft Auto」,和真正的 Grand Theft Auto 略有差别。 玩家们在玩
大数据文摘出品 作者:Caleb 前一阵子,全球玩家都在担心,难道苦苦等了8年的GTA6,又要延期了吗? 大概一周前,GTA6突然被放出了大规模内容,共计90多个视频,上万行源码。这也可以说是电子游戏史上最大的一次泄密事件了。 此前,这位泄露了GTA6内容的黑客在GTAForums更新了帖子,不仅直接放出自己的邮箱、Telegram,还向开发商Rockstar Games(R星)喊话,表示“期望达成一个交易”。 9月19日,R星也终于发布公告,承认了泄露内容的真实性,并指出此次泄露是由三方力量非法进入了内
神经网络负责处理画面中的一切信息,包括远处的风景,你每按下一次键控制车左转或右转、车撞到边栏等操作。
更有意思的是,据英特尔表示,这个补丁在Geforce RTX 3090 GPU上,完成一次画质增强推理,只需要半秒钟的时间。
GTA5是一款自由度极高的开放性游戏,该游戏支持自定模型组件,从而让其更加灵活能够定制出一些具有独有特性的动画,甚至可以拍摄简单的电影,在模型替换上有多种替换形式,一种是新增,另一种是直接替换原有的NPC路人等,这里我研究了一段时间终于搞明白了,GTA5中每个游戏组件的具体功能,从而能够将轻易的实现模型的替换,与新增等,另外GTA5还支持外部脚本扩展,你可以自己编写一些外部功能性脚本,灵活强极高。
相信在面试中,只要问到Spring,基本都会抛出一个问题,说说你对Spring IOC理解吧?虽然在日常的开发经常会使用到,但是要回答起来,并不简单。大脑经过简单的头脑风暴后,蹦出了控制反转、依赖注入这样的词语。显然这些并不是面试官想听的。
由于为语义分割注释像素级标签非常费力,因此利用合成数据是一个很有吸引力的解决方案。然而,由于合成域与真实域之间存在域间的差异,用合成数据训练的模型很难推广到真实数据中去。在本文中,我们考虑到两个域之间的根本区别作为纹理,提出了一种适应目标域纹理的方法。首先,我们利用风格转换算法对合成图像的纹理进行多样性处理。生成图像的各种纹理防止分割模型过度拟合到一个特定的(合成)纹理。然后通过自训练对模型进行微调,得到对目标纹理的直接监督。我们的结果达到了最先进的性能,我们通过大量的实验分析了在程式化数据集上训练的模型的属性。
原文名称:Reading game frames in Python with OpenCV - Python Plays GTA V 原文链接:https://pythonprogramming.net/game-frames-open-cv-python-plays-gta-v/ 原文作者:@Harrison 本文是Harrison《Python Plays GTA V》系列教程第一篇。 当OpenAI's Universe(Universe)出现后,很多文章都在鼓吹大量的游戏(甚至GTA5)已经做
在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:
2020年7月24日的时候,R⭐发了条公告,大概意思就是说GTA在线模式大表哥2在线模式要更新了,大表哥首当其冲,GTA紧跟其后。
人们在使用云服务器的时候,往往会发出这样的疑问,比如云服务器用什么硬盘?通常情况下,云服务器的硬盘是要根据自身业务方面的需求来判定,进而选择的,如果选择一个不合适的产品,那对自己之后的工作还是很受影响的。因此,选择一个对自身非常合适的硬盘系统软件,是一件非常重要的事情。
是重新搭一个模型呢,还是拿来新数据重新调参,在这个已经训练好的模型上搞迁移学习呢?
如图,本周Epic商城免费送GTA5,而且是一经入库永久拥有,并不是限免几天,而且还是豪华版,自带新手包。直到5月21号前都可以免费领。
DeepMind在13年发了一篇paper,叫做”Playing Atari with Deep Reinforcement Learning”,讲的是怎么教计算机玩atari游戏
话不多说,上资源: 链接:https://pan.baidu.com/s/1oWE6L0J1s33R_2zfcxiG_A 提取码:b9tf 解压后,先启动GTA5,进入游戏菜单界面 然后打开Xenos(32位)或者Xenos64(64位) 将文件夹下的GTAO_Booster.dll拖动进列表框内
对语义分割来讲基于卷积神经网络的方法,依赖像素级ground-truth标记,但是对未知领域可能泛化效果并不好。因为标记过程是沉闷和耗时的,开发将源ground truth标记到目标域引起了很大的关注。本文我们提出一种对抗训练方法在语义分割的内容中进行域适配。考虑语义分割作为结构输出包含源域和目标域的空间相似性,在输出空间中,我们采用对抗训练。为了进一步增强适配模型,我们构建一个多层对抗网络,在不同特征级别上有效的执行输出空间域适配。一系列的实验和消融研究在不同域适配下进行,包括合成到真实和跨城市场景。我们表明提出的方法在精度是视觉质量方面,超过了现有的最先进的方法。
本文来自于ECCV2018的论文《Adaptive Affinity Fields for Semantic Segmentation》,UC伯克利大学的研究人员提出了一种自适应相似场(Adaptive Affinity Fields )来辅助语义分割的方法,增强了网络对目标结构推理的能力,取得了非常显著的性能提升,代码已开源。 作者信息:
IBN-Net出发点是:提升模型对图像外观变化的适应性。在训练数据和测试数据有较大的外观差异的时候,模型的性能会显著下降,这就是不同域之间的gap。比如训练数据中的目标光线强烈,测试数据中的目标光线昏暗,这样一般效果都不是很好。
近日,专注于三维传感组件的安思疆科技获得近1亿人民币A轮投资,本轮融资由北京清控金信资本领投,力合科创基金、炼金术资本、杭州复林创投基金跟投。据悉,安思疆所获资金将主要用于扩大产能与研发投入。此外,算上曾获力合科创基金的2千万人民币天使投资,目前安思疆估值将达3亿人民币左右。
领域适应对于在新的、看不见的环境中取得成功至关重要。对抗性适应模型通过专注于发现域不变表示或通过在未配对的图像域之间进行映射,在适应新环境方面取得了巨大进展。虽然特征空间方法很难解释,有时无法捕捉像素级和低级别的域偏移,但图像空间方法有时无法结合与最终任务相关的高级语义知识。我们提出了一种使用生成图像空间对齐和潜在表示空间对齐来适应域之间的模型。我们的方法,循环一致的对抗性领域适应(CyCADA),根据特定的有区别的训练任务指导领域之间的转移,并通过在适应前后加强相关语义的一致性来避免分歧。我们在各种视觉识别和预测设置上评估了我们的方法,包括道路场景的数字分类和语义分割,提高了从合成驾驶领域到现实驾驶领域的无监督自适应的最先进性能。
无监督域自适应(UDA)可以解决基于卷积神经网络(CNN)的语义分割方法严重依赖于像素级注释数据的挑战,这是劳动密集型的。然而,这方面现有的UDA方法不可避免地需要完全访问源数据集,以减少模型自适应过程中源域和目标域之间的差距,这在源数据集是私有的真实场景中是不切实际的,因此无法与训练有素的源模型一起发布。为了解决这个问题,我们提出了一种用于语义分割的无源领域自适应框架,即SFDA,其中只有经过训练的源模型和未标记的目标领域数据集可用于自适应。SFDA不仅能够在模型自适应过程中通过知识转移从源模型中恢复和保存源领域知识,而且能够从目标领域中提取有价值的信息用于自监督学习。为语义分割量身定制的像素级和补丁级优化目标在框架中无缝集成。在众多基准数据集上的广泛实验结果突出了我们的框架相对于依赖源数据的现有UDA方法的有效性。
(VRPinea 5月11日电)今日重点新闻:苹果沉浸式VR技术获专利,将应用于自动驾驶汽车;联想ThinkReality A6 AR眼镜新增手势跟踪和识别功能;索尼申请自动驾驶AR/VR专利,提供沉浸式驾乘娱乐体验
基于深度学习的语义分割方法有一个内在的局限性,即训练模型需要大量具有像素级标注的数据。为了解决这一具有挑战性的问题,许多研究人员将注意力集中在无监督的领域自适应语义分割上。无监督域自适应试图使在源域上训练的模型适应目标域。在本文中,我们介绍了一种自组装技术,这是分类中领域自适应的成功方法之一。然而,将自组装应用于语义分割是非常困难的,因为自组装中使用的经过大量调整的手动数据增强对于减少语义分割中的大的领域差距没有用处。为了克服这一限制,我们提出了一个由两个相互补充的组件组成的新框架。首先,我们提出了一种基于生成对抗性网络(GANs)的数据扩充方法,该方法在计算上高效,有助于领域对齐。给定这些增强图像,我们应用自组装来提高分割网络在目标域上的性能。所提出的方法在无监督领域自适应基准上优于最先进的语义分割方法。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/oYuDaBaJiao/article/details/79777755
论文地址: http://arxiv.org/pdf/2110.11662v1.pdf
预测语义分割等结构化输出依赖于昂贵的每像素注释来学习卷积神经网络等监督模型。然而,在没有模型调整注释的情况下,在一个数据域上训练的模型可能无法很好地推广到其他域。为了避免注释的劳动密集型过程,我们开发了一种域自适应方法,将源数据自适应到未标记的目标域。我们建议通过构建聚类空间来发现逐片输出分布的多种模式,从而学习源域中补丁的判别特征表示。以这种表示为指导,我们使用对抗性学习方案来推动聚类空间中目标补丁的特征表示更接近源补丁的分布。此外,我们还表明,我们的框架是对现有领域自适应技术的补充,并在语义分割方面实现了一致的改进。广泛的消融和结果在各种设置的众多基准数据集上进行了演示,例如合成到真实和跨城市场景。
AI 科技评论按:生成式对抗性网络 GANs 是近几年最热门的机器学习范式之一,它“图像生成效果好”和“训练困难、效果不稳定”的特点吸引了许许多多研究者付出精力进行 GANs 的研究。虽然它在大尺寸图像和图像逼真程度方面的表现仍然有限,但仍然是目前最好的图像生成范式。 所以当看到如此逼真的高分辨率生成图像的时候,我们几乎要以为这是 GANs 的新突破。虽然图中还有一些扭曲和不自然,但是细节和物体的结构已经比较完善。然而定睛一看,这样的效果居然是一个单向的端到端网络完成的! 介绍这项成果的论
基于深度学习的语义分割方法效果出众,但需要大量的人工标注进行监督训练。不同于图像分类等任务,语义分割需要像素级别的人工标注,费时费力,无法大规模实施。借助于计算机虚拟图像技术,如3D游戏,用户可以几乎无成本地获得无限量自动标注数据。然而虚拟图像和现实图像间存在严重的视觉差异(域偏移),如纹理、光照、视角差异等等,这些差异导致在虚拟图像上训练出的深度模型往往在真实图像数据集上的分割精度很低。
拷贝 pem 秘钥文件 将 *.pem 秘钥文件也拷贝到 /etc/turnserver/ 目录下
作者 | 南京大学顾荣、吴侗雨 1 背景 公有云是一种为用户提供经济方便的计算资源的平台。随着云计算技术的快速发展,以及大数据查询需求的日益增加,很多公有云的云计算应用市场中,出现了越来越多云上 OLAP 引擎服务。为了能够根据自己的业务需求选择合适的 OLAP 引擎,并通过合适的配置使引擎在最佳状态运行,用户需要对当前使用的查询引擎性能进行评估。 当前 OLAP 引擎性能评估框架在云上部署使用时面临三个主要挑战: 1、对云环境适应能力弱。传统性能评估框架诞生时,尚未具备云上特有的 PaaS、IaaS
本教程使用服务器腾讯云云服务器 CVM(以下简称 CVM),以 Linux 系统 CentOS 7.0以上为例,来完成 WordPress 搭建工作。
大家好,我是鱼皮。 今天来聊一个老生常谈的问题,学编程时到底选择什么操作系统?Mac、Windows,还是别的什么。。 作为一个每种操作系统都用过很多年的程序员,我会结合我自己的经历来给大家一些参考和建议。 接下来先分别聊聊每种操作系统的优点和不足吧。 Windows 先说下国内用户最多的操作系统 Windows。我第一次接触 Windows 还是在小学一年级,也算是用了近 20 年的 Windows 吧。一直到大三进入企业实习前,我都是 Windows 的忠实用户。 当然了,大学前用 Windows 最
Learning to Adapt Structured Output Space for Semantic Segmentation
本文主要介绍 ChatGLM3-6B 的保姆级部署教程,在使用和我相同配置的腾讯云云服务器(是国内的服务器哦!这个难度,懂得都懂),保证一次成功。
《侠盗猎车手5》(Grand Theft Auto V)又名“给他爱5”,是由Rockstar Games游戏公司出版发行的一款围绕犯罪为主题的开放式动作冒险游戏。本作于2013年9月17日登陆Play Station 3、Xbox 360平台,2014年11月18日登陆Play Station 4和Xbox ONE平台。多人模式《侠盗猎车手Online》于2013年10月1日正式开放。PC版本已于2015年4月14日推出
很多时候我们写代码是为了替代重复劳动,解放生产力。学习定时任务可以帮助我们更好地完成日常性工作,如果你有一台云服务器、不关机的电脑或者树莓派的话,来学习一下如何使用Python定时参与抽奖吧~
现代操作系统都采用的是逻辑地址,即我们在程序中定义的地址都是逻辑上的并不是真正的物理地址,原因是因为在多道程序中是不能确定到程序运行后的物理地址的,有可能被其他程序占用,有可能会动态的改变其地址,例如物理地址在02位置,当01位置的数据变大后导致数据02的空间需要被占用,此时物理地址会发生变化。逻辑地址可以让每个进程自己的地址都是连续的即在逻辑上是连续的。
用于显示用户最近登录信息,可以看到哪些用户在哪个时间访问登录了机器,同时查看ip是不是自己的常用地址
在云计算技术迅速发展的今天,云服务器被广泛使用,云服务器已经成为企业、组织和个人不可或缺的重要基础设施。然而,云服务器的普及也伴随着日益严峻的安全挑战。今天德迅云安全就和大家了解云服务器安全的重要性,并分享一些常见的云服务器的安全保护措施,帮助我们构建更加稳固、全面的云服务器安全防线,提高云服务器的安全防护能力。
云服务器是这两年非常火爆的一个概念,不管是机关单位还是企业公司等,都会使用云服务器这一服务,因为云服务器具有传统服务器所不具备的诸多优势,其中云服务器所具有的核心内容就是云数据库,那么云服务器的数据库是什么呢?如何使用云服务器的数据库呢?
在项目根路径下的vue.config.js里面配置部署应用包时的基本 URL publicPath,不配置的话默认是 publickPath:"/";
逃脱了固有的数据存储问题,现在很多企业都在选择云服务。同样,企业的云服务需要云服务器支持。但是云服务器是什么?云服务器的概念和我们传统的物理服务器概念有什么出入呢?
在如今的数字化时代,选择合适的云服务器对于企业和个人来说至关重要。本文将为您详细介绍如何选择适合的云服务器,分享一些专家的实用经验,帮助您做出明智的决定。
云服务器也常常被称为云主机,它的作用是非常多的,近年来,云服务器已经逐渐取代了服务器,它自身具有众多优势,这也是大家选择云服务器的关键原因。我们在搭建云服务器之后,是需要经常维护的,如果我们不经常维护的话,云服务器也会出现很多问题。那么,云服务器怎么维护呢?
云服务器是云计算服务中最核心的一种产品,这种产品目前在很多个领域都有较为广泛地使用,比如数据库网站、企业网站等,云服务器有效解决了传统服务器的种种局限,成为互联网行业的热门产品,部分人却不知道云服务器如何使用,那么云服务器如何使用呢?云服务器有什么作用?
近年来已经有越来越多的用户使用上了云服务器,而随着使用者的增加,很多云服务器服务商对于云服务器的服务价格也开始松动,在这种良性循环下,很多用户都希望能够利用云服务器来实现一些功能,那么云服务器安装数据库可以吗?云服务器上的数据库安全吗?
不少人在租用服务器的时候,关于云服务器这方面不知道如何开启端口,而且云服务器拿到手,也不知道使用时该注意什么,那么云服务器怎么开启端口?云服务器使用注意事项有哪些?
没有区别。创建整机镜像有三种方式:使用云服务器创建、使用云服务器备份创建,以及使用云备份创建。使用备份创建镜像与使用云服务器创建镜像原理一样。云服务器创建镜像时,先为云服务器创建备份,再通过备份创建镜像,中间过程为系统自动完成的。所以二者没有区别。
云服务器的作用是比较多的,云服务器可以帮助我们更好的构建稳定安全的应用,而且还可以在很大程度上面帮助我们降低开发成本和开发难度。一般来说,云服务器也是需要一定的配置的,不然的话,也是无法正常运行的,那么,云服务器配置怎么选呢?
在传统建设网站的过程当中,需要租用服务器也需要使用本地硬盘才能够进行一系列的配置,将整个网站运行起来,随着10年以前云计算的诞生,这几年云服务器和云硬盘也逐渐开花结果,成为了许多大型应用平台的主要硬件。众所周周知云服务器和云硬盘的效能都是比较好的,那么弹性云服务器和云硬盘的关系有哪些呢?
领取专属 10元无门槛券
手把手带您无忧上云