首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图表解析系列之柱状图

将类别拆分称多个子类别,形成“堆叠柱状图”。再如将柱形图与折线图结合起来,共同绘制在一张图上,俗称“双轴图”,等等。...图片 堆叠柱状图:由堆叠项将一个类别拆成多个子类别形成堆叠柱状图。 图片 双轴图(组合图) 双轴图的指标分为左侧指标和右侧指标,对应的坐标轴分别为坐标 Y 轴的左轴(主轴)和右轴(副轴)。...通常以柱状图与折线图搭配使用,例如下图展示一年中各个月份的销量(柱状图)与目标完成率(折线图)。 图片 适用场景 柱状图最适合对分类的数据进行比较。...事实上,按图中的画法,视觉增长达到了 460% [条形图的高度是 35-34=1 和 39.6-34=5.6,所以(5.6-1)/1=460%〕。...如果我们以 0 作为纵轴起点,条形图按实际高度绘制(35 和 39.6),实际视觉增长只有 13%[ (39.6-35)/35]。 图片

2.4K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (数据科学学习手札37)ggplot2基本绘图语法介绍

    一、简介   ggplot2是R语言中四大著名绘图框架之一,且因为其极高的参数设置自由度和图像的美学感,即使其绘图速度不是很快,但丝毫不影响其成为R中最受欢迎的绘图框架;ggplot2的作者是现任Rstudio...,末尾的2是因为Hadley写包的一个习惯——对先前的版本不满意便写一个新版本的名称不变仅在末尾加上2,如reshape2等;   按照《图形的语法》一书中的观点,一张统计图形就是从数据到点、线或方块等几何对象的颜色...,在刚开始上手的时候可能稍有难度(而且官网的帮助内容比较不友好),而本文也是我在日常使用和与别人交流中摸索和总结出来的,将对ggplot2的绘图语法和绘图部件进行介绍,并附以常用的一些图形示例;   下面我们就来探索...,但仅使用了qplot()进行绘图,其局限性是只能使用在qplot()中定义的一个数据集和对应的一组图形属性映射,若希望将不同的数据通过不同的图层构建方式来展现在一张图上,就需要使用ggplot()函数...堆叠元素并将高度放缩为1 identity 不做任何调整(就像神经网络里的identity激活函数一样) jitter 给点添加扰动避免重合 stack 将图形元素堆叠起来   而上述这些位置参数通常是应用在条形图中

    7K50

    数据导入与预处理-拓展-pandas可视化

    折线图 1.1 导入数据 1.2 绘制单列折线图 1.3 绘制多列折线图 1.4 绘制折线图-双y轴 2. 条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3....绘制 df 第一列的折线图 # 绘制 df 第一列的折线图 df['A'].plot() plt.show() 输出为: 1.3 绘制多列折线图 df 的四列分别放在四个子图上 # 折线图|子图...# 将 df 的四列分别放在四个子图上 df.plot(subplots=True) plt.show() 输出为: df 的四列分别放在一个图上 # 折线图|绘制 df 全部列的折线图 # 同时指定...plt.show() 输出为: 1.4 绘制折线图-双y轴 折线图–双y轴 A、C、D使用一个y轴,B使用一个y轴 # 折线图|双y轴 # A、C、D使用一个y轴,B使用一个y轴 ax = df.plot...iloc[2].plot(kind = 'bar', figsize=(10, 6)) plt.show() 输出为: 2.2 多行条形图 多行堆叠 # 多行,堆叠对应着着stacked=True

    3.1K20

    这些条形图的用法您都知道吗?

    如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...双离散单数值的堆叠条形图 # 加载第三方包 library(readxl) # 读取外部数据 -- weather2017.xlsx(上海2017年天气数据) weather2017 <- read_excel...(path = file.choose()) # 明细数据--双离散单数值变量的堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo...双离散单数值的百分比堆叠条形图 # 明细数据--双离散单数值变量的百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...双离散单数值的交错条形图 # 明细数据--双离散变量单数值变量的交错条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill = fengli

    5.6K10

    R语言基础-画图(ggplot2)

    #fill和color的区分及连用#空心或实心都可以通过将shape-color连用达到目的ggplot(data = iris)+ geom_point(mapping = aes(x = Sepal.Length...,可以达到双色实心的目的#类似于ppt中的轮廓颜色、填充颜色,示例如下ggplot(data = iris)+ geom_point(mapping = aes(x = Sepal.Length,...,这边只要写x,y是函数自动生成的哦,自己非要写上的话报错#下面两段代码在这个情况下是出同一张图,不过因为市场需求关系,geom_FUNCTION类型的函数相对于用的更多。...(data = diamonds) + geom_bar(mapping = aes(x = cut, fill = clarity))图片#position = 'dodge'堆叠式ggplot(...")+ theme_classic() #加一句这个就可以了哦图片3.ggpubr#这边仅展示日常使用较多的箱线图组间比较library(ggpubr)p = ggboxplot(iris,x = '

    44540

    了解绘制条形图和折线图的细节

    本章将以ggplot2为主进行学习啦~~ ---- 3.1 绘制基本条形图 Q:当你有一个包含两列的数据框,一列为x轴上的位置,一列为y轴上的对应高度,基于此如何绘制条形图?...Q:如何调整条形图宽度和条形间距?...A:使用geom_bar()函数,并映射一个变量给fill参数(注意和簇状条形图的区别,这里不能设置position='dodge') cabbage_exp Cultivar Date Weight...折线图主要针对的是连续型变量,当然也可以用于有序的离散变量 ---- 4.1 绘制折线图 Q:如何绘制基础折线图?...A:运行ggplot()函数和geom_line()函数,并指定变量映射到x和y #基础画图 ggplot(BOD,aes(x=Time,y=demand))+ geom_line() #这里的时间是连续型变量

    7.1K10

    Pandas数据可视化

    单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用的可视化图表 在下面的案例中...也可以用来展示《葡萄酒杂志》(Wine Magazine)给出的评分数量的分布情况:  如果要绘制的数据不是类别值,而是连续值比较适合使用折线图 : 柱状图和折线图区别 柱状图:简单直观,很容易根据柱子的长短看出值的大小...,易于比较各组数据之间的差别 折线图: 易于比较各组数据之间的差别; 能比较多组数据在同一个维度上的趋势; 每张图上不适合展示太多折线  面积图就是在折线图的基础上,把折线下面的面积填充颜色 : 直方图...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是...: 通过透视表找到每种葡萄酒中,不同评分的数量 : 从上面的数据中看出,行列分别表示一个类别变量(评分,葡萄酒类别),行列交叉点表示计数,这类数据很适合用堆叠图展示 折线图在双变量可视化时,仍然非常有效

    12610

    玩转数据地图系列之——地图上的迷你条形图

    一周前更新了一篇数据地图上的气泡散点图的内容,不知怎地,这段时间就是跟地图死磕上了,今天还是数据地图,不过是在数据地图上呈现条形图、柱形图。...年的某经济度量指标(虚构)N15、N16和环比增长率Ratio。...ggplot的现有图层图形中是没有直接根据点坐标生成条形图、柱形图的,所以这里我们只能曲线救国,使用线条图和误差线来进行模拟。...接下来使用geom_linerange函数(也就是条线图函数)进行各个坐标点的模拟柱形绘制。...接下来我们来对已经塑造好的双柱条形图进行美化操作, windowsFonts(myFont = windowsFont("微软雅黑")) ggplot()+ geom_polygon(aes(x=long

    2.5K70

    可视化技能之Matplotlib(上)|可视化系列01

    基础图表绘制 数据可视化从目的来说,是为了更直观展示数据或数据之间的对比、分布或关联关系。散点图、折线图、柱状图、条形图、饼图、直方图是非常常用而基础的可视化图。...饼图与圆环图 图表元素调校 一张可视化图上除了主要的点、线、面之外,文本标签、坐标轴标签等也是很重要的可视媒介,特别是对于信息图表而言。下面这张图[5]基本囊括了用到的图形元素: ?...瀑布图绘制效果 组合图 为了更好地展现数据间的联系或变化,我们有时会需要将多种图表类型用在同一张可视化图里,一种是共用坐标轴的组合图,例如面积图+柱状图的组合、散点+折线图就是很基础的组合图。...另一种是双坐标轴,很常见的图是左边的y轴是月活,画柱状图,右边的y轴是增长率,画折线图。 ?...通过以上实践可以看到的Matplotlib可视化语法的特点是绘图对象和标签标题等元素有一定独立性,且有不同层级的接口可以用来微调元素,例如设置标题就有多种写法 ,Matplotlib不同于ggplot2

    1.7K41

    R数据可视化之ggplot2 (一)

    学完R语言的基本操作后,我们还可以继续学习R的几大著名而且使用强大的包,今天讲其中的一个,就是ggplot2,至于这个包的评价和地位,我就不多说了,感兴趣可以百度,它绝对是数据可视化的利器,好了,我们先来开始简单介绍一下这个包...先说说我们人手工作图的方式,1,先画一个坐标轴,2,然后根据数据在图上画图形3,在基础的图形上加一些注释,或加一些对比.基本上这就是我们作图的方式,那么ggplot2就跟这差不多了,1.先设定坐标轴和数据...首先需要加载ggplot2包 library(ggplot2) library(gcookbook) #主要用于获取数据集,若你用自己的数据集便可以不加载 1.画点线图....() #绘制点线图,相当于图层一个个叠加上去 2.画条形图 基础绘图系统:barplot(BOD$demand, names.arg=BOD$Time) #当变量为数值型,绘制条形图...,图中有离群点这里是两个,有木有发现这就是基本绘图与ggplot绘图的画箱线图的原理不同 ggplot: ggplot(ToothGrowth, aes(x=supp, y=len)) + geom_boxplot

    2K120

    R语言绘图之ggplot2

    ggplot图的元素可以主要可以概括如下:最大的是plot(指整张图,包括background和title),其次是axis(包括stick,text,title和stick)、legend(包括backgroud...,由斜率和截距指定 geom_area 面积图(即连续的条形图) geom_bar 条形图 geom_bin2d 二维封箱的热图 geom_blank 空的几何对象,什么也不画 geom_boxplot...箱线图 geom_contour 等高线图 geom_crossbar crossbar图(类似于箱线图,但没有触须和极值点) geom_density 密度图 geom_density2d 二维密度图...(与Crossbar图和箱线图相关,可以用来表示线的范围) geom_polygon 多边形 geom_quantile 一组分位数线(来自分位数回归) geom_rect 二维的长方形 geom_ribbon...stat_smooth 添加平滑曲线 stat_spoke 绘制有方向的数据点(由x和y指定位置,angle指定角度) stat_sum 绘制不重复的取值之和(通常用在三点图上) stat_summary

    4.3K10

    「R」ggplot2数据可视化

    ggplot函数设置图形但没有自己的视觉输出。使用一个或多个几何函数向图中添加了几何对象(简写为geom),包括点、线、条、箱线图和阴影区域。...2=虚线,3=点,4=点破折号,5=长破折号,6=双破折号) size 点的尺寸和线的宽度 shape 点的形状(和pch一样,0=开放的方形,1=开放的圆形,2=开放的三角形,等等) position...绘制诸如条形图和点等对象的位置。...对条形图来说,'dodge'将分组条形图并排,'stacked'堆叠分组条形图,'fill'垂直地堆叠分组条形图并规范其高度相等。对于点来说,'jitter'减少点重叠。...Salaries by phd.png 最后,我们可以用一个分组的条形图按学术等级和性别来可视化教授的人数(三种条形图方式): ? Number by Rank1.png ?

    7.4K10

    GCTA学习5 | GCTA计算PCA及可视化

    GCTA这款软件,写了几篇了,后面将介绍单性状遗传力评估,以及多性状遗传力和遗传相关评估,感觉它与传统的评估软件,比如ASReml,DMU比较像,但是使用范围上更偏向医学。...# 选择最佳的PCA个数:碎石折线图 pcaal[1:10,] %>% ggplot(aes(x=index,y=por, group=1))+ geom_point(size=4)+ geom_line...()+ labs(title="Scree plot: PCA") 3.2 碎石图(条形图) 这里,选择前10个主成分。...# 选择最佳的PCA个数:碎石条形图 pcaal[1:10,] %>% ggplot(aes(x=index,y=por))+ geom_col()+ labs(title="Scree plot...PCA分析拓展 1,PCA分析,可以根据分组,绘制置信区间 分组PCA 2,PCA分析中,可以将PCA的百分比和累计百分比绘制到一张图上面。

    1.3K60

    60种常用可视化图表的使用场景——(上)

    3、弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...弧线图适合用来查找数据共同出现的情况。但缺点是:不能如其他双轴图表般清楚显示节点之间的结构和连接,而且过多连接也会使图表难于阅读。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...跟折线图一样,面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势,而非表示具体数值。 两种较常用的面积图是分组式面积图和堆叠式面积图。...推荐的制作工具有:Arpit Narechania's Block。 30、径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。

    26710

    数据可视化基本套路总结

    (排序的宗旨是直观的表达出想展示的规律) 条形图 ? 条形图 只不过把柱状图坐标旋转一下,竖着的变成横着的,这个可根据版面自由选择。上图示例就是串列的堆叠条形图。 南丁格尔玫瑰图 ?...在实际的数据可视化中,往往不是孤立地用一个基本图形,把多个图形组合、邻接,能交叉对比出更多的信息。比如在柱状图上叠加折线图,在地图上叠加散点图,把多个柱状图放在一起对比等等。...如果只把一张图扔给用户让他们自己去理解,这样体验太差;配个人在一边讲解成本又太高。交互式可视化系统可以做引导模块,引导用户去探索、理解,也能增加用户的兴趣和成就感。...ggplot2 R最擅长的除了统计建模就是可视化了,而ggplot2是最流行、最强大的绘图包(应该没有之一)。对于静态图,只要你有足够的创意,ggplot2基本都可以通过其系统完备的画图语法实现。...可以生成一张pdf矢量图,然后导入PS或AI中,这样对每一个元素操作都很方便。生物AI插图素材获取和拼装指导 文章用图的修改和排版(2) DataV 最后友情帮助阿里打个广告。

    2.7K20

    常用60类图表使用场景、制作工具推荐!

    弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...弧线图适合用来查找数据共同出现的情况。但缺点是:不能如其他双轴图表般清楚显示节点之间的结构和连接,而且过多连接也会使图表难于阅读。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...跟折线图一样,面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势,而非表示具体数值。 两种较常用的面积图是分组式面积图和堆叠式面积图。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。

    8.9K20

    可视化图表样式使用大全

    弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。 弧线图适合用来查找数据共同出现的情况。...但缺点是:不能如其他双轴图表般清楚显示节点之间的结构和连接,而且过多连接也会使图表难于阅读。 推荐的制作工具有:Protovis (编程语言)、D3 (编程语言)。 折线图 ?...堆叠式条形图 ? 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...跟折线图一样,面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势,而非表示具体数值。 两种较常用的面积图是分组式面积图和堆叠式面积图。

    9.4K10
    领券