Freezable是WPF中一个特殊的基类,用于创建可以冻结(Freeze)的可变对象。冻结一个对象意味着将其状态设置为只读,从而提高性能并允许在多线程环境中共享对象。
在之前写的一篇文章【WPF --- 如何以Binding方式隐藏DataGrid列】中,我先探索了 DataGridTextColumn 为什么不在可视化树结构内?又给出了解决方案,使用 Freezable ,该抽象类是 DependencyObject 的子类,能使用依赖属性在 Xaml 进行绑定,它承载了 DataContext 且有属性变化通知功能,触发 VisibilityConverter转换器,实现了预期功能。
应用开发过程中,常常会对用户输入内容进行验证,通常是基于类型、范围、格式或者特定的要求进行验证,以确保输入符合预期。例如邮箱输入框校验输入内容是否符合邮箱格式。在WPF中,数据模型允许将ValidationRules与Binding对象关联,可以通过继承ValidationRule类并重写Validate方法来创建自定义规则。
先在ViewModel创建数据源 People 和控制列隐藏的 IsVisibility,这里直接以 MainWindow 为 DataContext
大家好,我是道哥,今天我为大伙儿解说的技术知识点是:【中断处理中的下半部分机制-工作队列】。
(这种特性让人联想到全身麻醉中的一种现象,即患者在 醒来时似乎大致恢复到麻醉前的状态)
在 WPF 中,常用的画刷里面有纯色画刷 SolidColorBrush 类。因为画刷会对应到 DirectX 的资源,因此之前我以为纯色画刷其实会比 Color 会占用更多的资源。在 WPF 中 Color 其实是结构体,创建速度快。而 SolidColorBrush 是画刷,会对应 DirectX 资源,相对来说性能会比较差。但在通过阅读 WPF 的源代码,发现其实 SolidColorBrush 的创建的性能其实是特别好的,因此请不要担心创建了太多的纯色画刷类
可以发现sleep主要调用clock_nanosleep系统调用来进行睡眠(也就是说用户态任务睡眠需要调用系统调用陷入内核)。
发布于 2018-11-23 13:15 更新于 2019-01-03 01:03
WPF 是微软推出的表现层UI开发框架,全称 Windows Presentation Foundation。 相对Winform来讲,它使用一种全新的桌面应用程序 UI 的开发方式。 除了像Winform那样在“Windows 窗体”上删除控件之外,WPF 还为应用程序开发提供了额外的功能改善,包括丰富的用户界面、动画等等。
今天小伙伴问我一个问题,说为什么相同的代码,如果设置到按钮上,是可以让按钮的某个属性变更,但是如果设置给 TranslateTransform 的 X 或 Y 就不会有任何值变更
大家好,我是程栩,一个专注于性能的大厂程序员,分享包括但不限于计算机体系结构、性能优化、云原生的知识。
进程冻结技术(freezing of tasks)是指在系统hibernate或者suspend的时候,将用户进程和部分内核线程置于“可控”的暂停状态。
问题来自【愚公系列】2023年07月 WPF控件专题 2023秋招WPF高频面试题[1],回答站长通过ChatGPT重新整理,可对比两者区别学习、整理。
最近遇到一个kworker问题,callstack如下,线程adas的陷入kernel space后会schedule_work调用一个while(1)的worker,kill adas后重新启动adas后adas线程会在调用dma_alloc_coherent的时候block住
无论是任务处于用户态还是内核态,经常会因为等待某些事件而睡眠(可能是等待IO读写完成,也可能等待其他内核路径释放一把锁等)。本文来探讨一下,任务处于睡眠中有哪些状态?睡眠对于任务来说究竟意味着什么?内核是如何管理睡眠的任务的?我们会结合内核源代码来分析任务的睡眠,力求全方位角度来剖析。
在 WPF 里面,渲染可以从架构上划分为两层。上层是 WPF 框架的 OnRender 之类的函数,作用是收集应用程序渲染的命令。上层将收集到的应用程序绘制渲染的命令传给下层,下层是 WPF 的 GFX 层,作用是根据收到的渲染的命令绘制出界面。本文所聊的是渲染上层部分,在 WPF 框架是如何做到界面刷新渲染,包括此调用的顺序以及框架逻辑
一种新的机制出现的原因往往是为了解决实际的问题,虽然linux kernel中已经提供了workqueue的机制,那么为何还要引入cmwq呢?也就是说:旧的workqueue机制存在什么样的问题?在新的cmwq又是如何解决这些问题的呢?它接口是如何呈现的呢(驱动工程师最关心这个了)?如何兼容旧的驱动呢?本文希望可以解开这些谜题。
发布于 2018-10-14 12:23 更新于 2018-10-16 13:01
发布于 2018-10-13 21:38 更新于 2018-10-14 04:25
伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享,个人微博CSDN pwl999,欢迎大家关注! 1.1 worker_pool 1.1.1 normal worker_pool 1.1.2 unbound worker_pool 1.2 worker 1.2.1 worker处理work 1.2.2 worker_pool动态管理worker 1.2.3 cpu hotplug处理 1.3 workqueue 1.3.1 系统workq
发布于 2017-11-13 15:55 更新于 2018-02-19 22:41
需要关注注册驱动的有hub, usb, usb-storage。hub中用来做检测usb口是否有OTG的东东接入,usb是所有usb接入设备的老大哥,usb-storage只是usb的一个小老弟。
WPF资源系统是一种保管一系列对象(如常用的画刷、样式或模版)的简单办法,从而使您更容易地复用这些对象。
应用程序中执行 getService() 需与 ServiceManager 通过 binder 跨进程通信,此过程中会贯穿 Framework、Natve 层以及 Linux 内核驱动。
我是一个线程,生活在Linux帝国。一直以来辛勤工作,日子过得平平淡淡,可今天早上发生了一件事让我回想起来都后怕。
H618在DDR物料适配支持时候,reboot实验异常进休眠,在reboot老化测试中报如下log1
今天以一个交互式小球的例子跟大家分享一下wpf动画中DoubleAnimation的基本使用。该小球会移动到我们鼠标左键或右键点击的地方。
在之前的softirq中提到过,内核在中断的bottom half引入了softirq, tasklet, workqueue。 而softirq和tasklet只能用在中断上下文中,而且不可以睡眠。所以内核引入了workqueue,工作队列运行在进程上下文,同时可以睡眠。在以前版本的内核中workqueue的代码比较简单。在linux2.6.30代码量在1000行左右,而在linux3.18代码量在5000行左右。其中巨大的变化就是引入了Concurrency Managed Workqueue (cmwq)概念。不过本篇先学习以前版本的workqueue,因为它简单。在了解了简单版本的存在问题之后在学习cmwq就有更好的认识。
在 WPF 程序中,可能会存在 Application.Current.Dispatcher.Xxx 这样的代码让一部分逻辑回到主 UI 线程。因为发现在调用这句代码的时候出现了 NullReferenceException,于是就有三位小伙伴告诉我说 Current 和 Dispatcher 属性都可能为 null。
本文适合有基本Linux内存管理概念的新手阅读,且本文旨在从工作流程和设计思想上介绍KSM,在涉及到源代码的地方,进行了部分删减,如果想详细了解KSM,推荐阅读源代码及源代码中的注释。
大家平时做WPF开发,相信用Visual studio的小伙伴比较多。XAML代码曾经在某些特殊版本的Visual Studio中是可以加断点进行调试的,不过目前多数版本都不支持在XAML加断点来调试。
书接前文,前篇文章介绍了WPF中的Dispatcher,由于概念太多,可能不是那么好理解。这篇文章继续讨论,希望在线程和Dispatcher这个点上,能把它讲透。
前言:文件描述符是内核提供的一个非常有用的技术,典型的在服务器中,主进程负责接收请求,然后把请求传递给子进程处理。本文分析在内核中,文件描述符传递是如何实现的。
在 Linux 系统的进程虚拟内存中,一个重要的特性就是不同进程的地址空间是隔离的。A 进程的地址 0x4000 和 B 进程的 0x4000 之间没有任何关系。这样确确实实是让各个进程的运行时互相之间的影响降到了最低。某个进程有 bug 也只能自己崩溃,不会影响其它进程的运行。
主要是驱动设备的初始化(binder_init),打开 (binder_open),映射(binder_mmap),数据操作(binder_ioctl)。
这些函数的名字基本都可以自解释。 再介绍下misc 设备,linux 内核将一些不符合预先确定的字符设备划分为杂项设备,使用的数据结构如下;
Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中。
原本是没有这篇文章的,因为原来写Binder的时候没打算写Binder驱动,不过我发现后面大量的代码都涉及到了Binder驱动,如果不讲解Binder驱动,可能会对大家理解Binder造成一些折扣,我后面还是加上了这篇文章。主要内容如下:
ServiceManager是Binder IPC通信过程中的守护进程,本身也是一个Binder服务,但并没有采用libbinder中的多线程模型来与Binder驱动通信,而是自行编写了binder.c直接和Binder驱动来通信,并且只有一个循环binder_loop来进行读取和处理事务,这样的好处是简单而高效。
结合www.kernel.org给出的官方解释以及centos7代码的理解先对dirty相关内核参数做一个概述:
binder_transaction堆栈及唤醒那个队列 Binder承担了绝大部分Android进程通信的职责,可以看做是Android的血管系统,负责不同服务模块进程间的通信。在对Binder的理解上,可大可小,日常APP开发并不怎么涉及Binder通信知识,最多就是Service及AIDL的使用会涉及部分Binder知识。Binder往小了说可总结成一句话:一种IPC进程间通信方式,负责进程A的数据,发送到进程B。往大了说,其实涉及的知识还是很多的,如Android 对于原Binder驱动的扩展、Zyg
上一篇博客,我们学习了服务是如何向ServiceManager中进行注册的,本篇博客,我们将学习如何从ServiceManager中获取服务,和上一篇一样,同样以MediaPlayerService为例子。
从整体架构以及通信协议的角度来阐述了Binder架构。那对于binder线程是如何管理的呢,又是如何创建的呢?其实无论是system_server进程,还是app进程,都是在进程fork完成后,便会在新进程中执行onZygoteInit()的过程中,启动binder线程池。
Framework是一个中间层,它对接了底层的实现,封装了复杂的内部逻辑,并提供外部使用接口。Framework层是应用程序开发的基础。Binder Framework层为了C++和Java两个部分,为了达到功能的复用,中间通过JNI进行衔接。Binder Framework的C++部分,头文件位于这个路径:/frameworks/native/include/binder/。实现位于这个路径:/frameworks/native/libs/binder/。binder库最终会编译成一个动态链接库:/libbinder.so,供其他进程连接使用。今天按照android Binder的流程来源码分析Binder,本篇主要是Framwork层里面C++的内容,里面涉及到的驱动层的调用,请看上一篇文章。我们知道要要想号获取相应的服务,服务必须现在ServiceManager中注册,那么问题来了,ServiceMamanger是什么时候启动的?所以本篇的主要内容如下:
本系列是从入门到转型之Linux性能优化实践学习指南,是博主学习Linux性能优化之路的精华版本,我将分享大量性能优化的思路和方法,并进行相应工具使用介绍和总结。
内存:由于硬盘读取速度较慢,如果 CPU 运行程序期间,所有的数据都直接从硬盘中读取,则非常影响效率。所以 CPU 会将程序运行所需要的数据从硬盘中读取到内存中。然后 CPU 与内存中的数据进行计算、交换。内存是易失性存储器(断电后,数据消失)。内存条区是计算机内部(在主板上)的一些存储器,用来保存 CPU 运算的中间数据和结果。内存是程序与 CPU 之间的桥梁。从硬盘读取出数据或者运行程序提供给 CPU。
领取专属 10元无门槛券
手把手带您无忧上云