随着互联网飞速发展,企业业务种类会越来越多,业务数据量会越来越大,当发展到一定规模时,传统的数据存储结构逐渐无法满足企业需求,实时数据仓库就变成了一个必要的基础服务。以维表 Join 为例,数据在业务数据源中以范式表的形式存储,在分析时需要做大量的 Join 操作,降低性能。如果在数据清洗导入过程中就能流式的完成 Join,那么分析时就无需再次 Join,从而提升查询性能。
某个图书网站,希望看到双十一秒杀期间实时的热销排行榜单。我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5秒钟输出最近一小时内点击量最多的前 N 个商品/图书.
大数据相关的岗位近年来增长不少,有不少朋友都在转这个方向,下面是最近整理的大数据技术知识库,供大家参考:
微信后台回复:“框架”,获取高清图片 前言 说起大数据处理,一切都起源于Google公司的经典论文:《MapReduce:Simplied Data Processing on Large Clusters》。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入数据量很大,单机难以处理。所以需要利用分布式的方式完成计算,并且
前一阵痴迷于calcite,打算写一些streaming sql相关的东西,正好时逢置办年货,就买了本书《Flink基础教程》,打开看了一下,就放不下了,一口气都看完了,书不厚,很薄的一本小册子,有种醍醐灌顶的感觉,回想起9月份写的《阿卡姆科普报告——Flink》未免有些稚嫩......
前言 说起大数据处理,一切都起源于Google公司的经典论文:《MapReduce:Simplied Data Processing on Large Clusters》。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入数据量很大,单机难以处理。所以需要利用分布式的方式完成计算,并且需要考虑如何进行并行计算、分配数据
本书内容丰富,展示了如何使用Hadoop构建可靠、可伸缩的分布式系统,程序员可从中探索如何分析海量数据集,管理员可以了解如何建立与运行Hadoop集群。
互联网技术的发展让大多数企业能够积累大量的数据,而企业需要灵活快速地从这些数据中提取出有价值的信息来服务用户或帮助企业自身决策。然而处理器的主频和散热遇到了瓶颈,CPU难以通过纵向优化来提升性能,所以多核这种横向扩展成为了主流。也因此,开发者需要利用多核甚至分布式架构技术来提高企业的大数据处理能力。这些技术随着开源软件的成功而在业界得到广泛应用。
Flink Forward Asia 2022 将于 11 月 26-27 日在线上举办,议程内容正式上线! 今年是 Flink Forward Asia(下文简称 FFA)落地中国的第五个年头,也是 Flink 成为 Apache 软件基金会顶级项目的第八年。过去这几年,Flink 一方面持续优化其流计算核心能力,不断提高整个行业的流计算处理标准,另一方面沿着流批一体的思路逐步推进架构改造和应用场景落地。伴随着实时化浪潮的发展和深化,Flink 已逐步演进为流处理的领军角色和事实标准。 作为开源大数据领域
Flink Forward Asia 2022 将于 11 月 26-27 日在线上举办,议程内容正式上线! 今年是 Flink Forward Asia(下文简称 FFA)落地中国的第五个年头,也是 Flink 成为 Apache 软件基金会顶级项目的第八年。过去这几年,Flink 一方面持续优化其流计算核心能力,不断提高整个行业的流计算处理标准,另一方面沿着流批一体的思路逐步推进架构改造和应用场景落地。伴随着实时化浪潮的发展和深化,Flink 已逐步演进为流处理的领军角色和事实标准。 作为开源大数据领
写博客也已经快一年了,从去年的1024到现在金秋10月已纷至沓来。回顾这一年所发布的原创文章,基本都是与大数据主流或者周边的技术为主。本篇博客,就为大家介绍几篇关于大数据领域必看的经典书籍,喜欢的小伙伴记得来发一键三连。
我们书接上文,我们在之前的文章《正面超越Spark | 几大特性垫定Flink1.12流计算领域真正大规模生产可用(上)》详细描述了Flink的生产级别Flink on K8s高可用方案和DataStream API 对批执行模式的支持。
大数据入门学习框架 前言 利用框架的力量,看懂游戏规则,才是入行的前提 大多数人不懂,不会,不做,才是你的机会,你得行动,不能畏首畏尾 选择才是拉差距关键,风向,比你流的汗水重要一万倍,逆风划船要累
👆关注“博文视点Broadview”,获取更多书讯 以下内容节选自《Flink实战派》一书! ---- --正文-- 大数据技术和人工智能(机器学习)的结合,使利用数据价值的技术有了新的突破。 在通常情况下,大数据技术与机器学习是互相促进、相依相存的关系。 01 大数据和机器学习之间的关系 机器学习不仅需要合理、适用和先进的算法,还需要依赖足够好和足够多的数据。 大数据可以提高机器学习模型的精确性。 数据的数据量越多,质量越高,机器学习的效率和准确性就越高。机器学习是大数据分析的一个重要方向(方式)。
前两天发了一篇《SQL的3列4种对比方法》,近500 阅读。一个月没更文了,没想到朋友们都还关注着,我很激动,非常感谢。
面向造轮子编程 这大概是还在读书的同学最大的困惑了。自己明明看了很多书,感觉不到自己的进步,很有挫败感。计算机科学是一门实践的科学,你发现你看了《现代操作系统》,《CSAPP》,《算法》,《计算机网络
基于flink实时流计算的,金融证券项目,实时大屏展示,预警模块和离线模块的处理。
本文由 PingCAP 研发工程师雷宇分享,主要从宏观角度分析 TiDB 究竟能做什么,创造什么样的价值,以及研发过程中的一些设计立足点。 文章将从四个部分分享:
2021年的第一本书, 就在这里选! 12月书讯,精彩来袭 临近年末,可能由于疫情的原因, 前几个月感觉就是一晃而过呀。 回顾2020这魔幻的一年,博文菌与你 一起追过新兴科技的浪潮, 一起探寻过大厂几十年的技术长征, 一起重温过经典之作的诞生, 一同见证过霸榜的高光时刻…… 今天,踩在2020的尾巴尖儿上 博文菌带来10本12月新书 打响最后时刻的技术节拍 文末参与互动赠书 新年好书提前收割 ▼ 本期书讯 1 《阿里云数字新基建系列:云原生操作系统Kubernetes》 2 《BPF之巅:洞悉
《编码:隐匿在计算机软硬件背后的语言》 :零基础入门 《穿越计算机的迷雾》:零基础,但是读起来没有《编码》流畅 《程序是怎么跑起来的》 :除了第6章是讲压缩之外,别的都应该读一下
kafka实现了Exactly Once(精确一次)语义,主要是基于生产者端幂等以及kafka服务端事务保障。
这本书是公司一位负责数据库的同事推荐的,正好数据中心也在重构和优化,以应对更加海量的数据,所以便花了点时间读完了这本书。全书分了三个篇章:全局概览,从比较高的高度概述了大数据的概念及相关技术;离线数据开发,主要讲解了Hadoop和Hive以及相关的数据建模;实时数据开发,按照各个技术出现的时间先后,依次讲解了Storm、Spark、Flink和Beam。
当之无愧的2018第一神书,虽然出版时间略晚,后发亦可先制。读此书之前可以先读《Streaming 101》和《Streaming 102》预热。《Streaming Systems》沉淀了谷歌过去十多年对流、批计算的思考,前半部分主要阐述了Dataflow模型,提出流计算不确定性和可靠性的有效解决方案,把批处理统一吸纳进同一套框架,后半部分叙述了Streaming SQL的可行性。这本书的也是大热的 Flink 和Structural Streaming 的理论基础。
问题导读 1.阅读源码不同的情况该如何阅读源码? 2.如果为了面试,该如何快速懂得源码? 3.阅读源码的难点在什么地方? 为何要阅读源码?可能原因如下: 1.面试要求 2.提升编码能力 在面试中,
4. 详细介绍下MapReduce的工作机制?我重点回答了切片原理和Shuffle机制
《Streaming Systems》第二章总结了构建一个正确、稳定、低时延的流处理系统将会面临的四个问题及其解决办法:
TiCDC 是一个通过拉取 TiKV 日志实现的 TiDB 增量数据同步工具,具有还原数据到与上游任意 TSO 一致状态的能力,同时提供开放数据协议,支持其他系统订阅数据变更。TiCDC 运行时是无状态的,借助 PD 内部的 etcd 实现高可用。TiCDC 集群支持创建多个同步任务,向多个不同的下游进行数据同步
TiCDC 是一个通过拉取 TiKV 日志实现的 TiDB 增量数据同步工具,具有还原数据到与上游任意 TSO 一致状态的能力,同时提供开放数据协议,支持其他系统订阅数据变更。TiCDC 运行时是无状态的,借助 PD 内部的 etcd 实现高可用。TiCDC 集群支持创建多个同步任务,向多个不同的下游进行数据同步。
书接上文 【Flink实时数仓】需求一:用户属性维表处理-Flink CDC 连接 MySQL 至 Hbase 实验及报错分析http://t.csdn.cn/bk96r 我隔了一天跑Hbase中的数据,发现kafka报错,但是kafka在这个代码段中并没有使用,原因就是我在今天的其他项目中添加的kafka依赖导致了冲突。
从2016年起,笔者在腾讯公司负责QQ后台的海量服务分布式组件的架构设计和研发工作,例如微服务开发框架SPP、名字路由CMLB、名字服务、配置中心、NoSQL存储等,在分布式架构、高性能架构、海量服务、过载保护、柔性可用、负载均衡、容灾、水平扩展等方面做了大量的工作,以公共组件的形式,支撑了来自QQ后台和其他BG海量服务的海量流量。后来在2018年底,笔者负责监控大数据平台的研发工作,目标是解决现有监控后台成本高昂的痛点,和支撑内部和外部的海量监控数据的需求,打造千亿级监控大数据平台。 笔者发现当前在监控技术领域缺乏优秀的监控系统,尤其是在海量监控数据场景,很多团队常用的一种做法是堆机器和堆开源软件,比如采用大量高配置的机器,单机百CPU核数、TB内存、数十TB的SSD存储,堆了一堆开源软件,例如Elasticsearch、Druid、Storm、Kafka、Hbase、Flink、OpenTSDB、Atlas、MangoDB等。
废话不多说,咱们先直接上本文的目录和结论,小伙伴可以先看结论快速了解博主期望本文能给小伙伴们带来什么帮助:
flink sql 知其所以然(十四):维表 join 的性能优化之路(上)附源码
作者 | 蔡芳芳 采访嘉宾 | 王宇飞、罗齐 自年初成立开源委员会以来,字节跳动开源动作频频。公开信息显示,字节跳动近五个月新开源了不少项目,包括 Shuffle 框架 Cloud Shuffle Service、基于 Rust 的 RPC 框架 Volo 等。 10 月 26 日,字节宣布开源自研数据集成引擎 BitSail,采用 Apache 2.0 开源许可。据悉,BitSail 支持多种异构数据源间的数据同步,并提供离线、实时、全量、增量场景下的全域数据集成解决方案,目前服务于字节内部几乎所有
👆点击“博文视点Broadview”,获取更多书讯 你是否有这样的苦恼? 一本书看完之后只懂了理论知识,却不知道如何上手实践! 书中内容讲得太高深,但学着学着就卡住,怎么都跨不过去! 想要了解底层原理,学会举一反三,书中却只讲了表层的使用方法! 读完书之后有很多疑问,却找不到人解答交流! 有这样一套书 每本书都完美地解决了上述问题 是帮助你学好用好一门技术的“航空母舰” 这套书就是“实战派”系列 本期书单,博文菌就来带大家看一下“实战派”系列家族都有谁吧! 01 ▊《Spring Cloud Al
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些有价值的内容。此时第一步需要做的是把数据采集过来。数据采集是大
如果说互联网的目标,是连接一切,那么推荐系统的作用,就是建立更加高效的连接了。 推荐系统从没像现在这样,影响着我们的生活。当你上网购物时,天猫、京东会为你推荐商品;想了解资讯,头条、知乎会为你准备感兴趣的新闻;想消遣放松,抖音、快手会为你奉上让你欲罢不能的短视频。 而驱动这些巨头进行推荐服务的,都是基于深度学习的推荐模型。 2019 年阿里的千人千面系统,促成了天猫“双 11” 2684 亿成交额。假设通过改进商品推荐功能,使平台整体的转化率提升 1%,就能在 2684 亿成交额的基础上,再增加 26.84
这本书的最大特点是通俗易懂,只要有一点点的开发经验就可以读懂这本书。通过这本书,可以很轻易地理解类似于淘宝、京东这样的网站背后是怎么运行的,然后建立起一个比较宏大的视野,了解到自己平时所做的工作在整个团队里的是怎么样的定位。可能唯一的遗憾在于这本书成书于2012年,有些技术已经跟不上现在的技术发展,比如云原生、分布式数据库。
以上种种,也许还有一些其它重要的原因,比如说qiong ... 一直以来让我非常非常有内驱力的坚持到现在。
说了九次面试感觉我是大神,拿了SP之类,其实并不是,内情就是内推转为了校招,内推五次面试,校招四次面试,在加校招的笔试。本帖子适用于跨专业的人士。sp勿喷,有错别字,勿喷,只是想写个面试经验给以后的人士。 我投递是数据岗位,对于之前我主要搞机器人的我来讲,基本处于什么的都不会的状态,做数据的一般都知道,需要用什么 比如odps,hadoop,flink等等工具,然后做业务需要范式建模,纬度建模等等。我可以真实的告诉大家,之前这些我并不是很熟悉的。以前摸到的数据也只是阿里巴巴数据天池比赛。下面一一叙述开来。
接下来我们将介绍基于腾讯云流计算 Oceanus Flink 平台、PipeLine 设计模式搭建的实时数据仓库思想。该方案已经落地内容商业化新闻如广告实时广告停单、实时报表、实时特征计算、游戏联运行为分析、数据异常检测等场景。
本文作者:腾讯新闻商业化数据高级工程师 罗强 摘要 随着社会消费模式以及经济形态的发展变化,将催生新的商业模式。腾讯新闻作为一款集游戏、教育、电商等一体的新闻资讯平台、服务亿万用户,业务应用多、数据量大。加之业务增长、场景更加复杂,业务对实时计算高可靠、可监控、低延时、数据可回溯的要求也越来越迫切。比如新闻广告投放、停单、在线推荐、电商搜索中,更快的响应用户需求、精准计费停单,意味着着更好的用户体验和更多的收入。 接下来我们将介绍基于腾讯云流计算 Oceanus Flink 平台、PipeLine 设
摘要 随着社会消费模式以及经济形态的发展变化,将催生新的商业模式。腾讯新闻作为一款集游戏、教育、电商等一体的新闻资讯平台、服务亿万用户,业务应用多、数据量大。加之业务增长、场景更加复杂,业务对实时计算高可靠、可监控、低延时、数据可回溯的要求也越来越迫切。比如新闻广告投放、停单、在线推荐、电商搜索中,更快的响应用户需求、精准计费停单,意味着着更好的用户体验和更多的收入。 接下来我们将介绍基于腾讯云流计算 Oceanus Flink 平台、PipeLine 设计模式搭建的实时数据仓库思想。该方案已经落地内
出品 | OSC开源社区(ID:oschina2013) Stack Overflow 宣布了一项名为「Overflow Offline」的新计划,旨在打造一个离线版 Stack Overflow,让更多无法正常使用互联网的人也能用上 Stack Overflow。 据称,他们正在与非营利组织 Kiwix 合作,以确保 Stack Overflow 网站数据集的最新版本可供需要它的人轻松获取,以及努力提升其可读性并减小体积,方便用户使用。 Kiwix 是成立于 10 多年前的非营利组织,其产品 K
◆ 简介 虽然大多数人都熟悉Uber,但并非所有人都熟悉优步货运, 自2016年以来一直致力于提供一个平台,将托运人与承运人无缝连接。我们正在简化卡车运输公司的生活,为承运人提供一个平台,使其能够浏览所有可用的货运机会,并通过点击一个按钮进行预订,同时使履行过程更加可扩展和高效。 为托运人提供可靠的服务是优步货运获得他们信任的关键。由于承运人的表现可能会大大影响货运公司服务的可靠性,我们需要对承运人透明,让他们知道我们对他们负责的程度,让他们清楚地了解他们的表现,如果需要,他们可以在哪些方面改进。 为了实现
阿里妹导读:用户只需在前端简单配置下指标,系统即可自动生成大宽表,让用户查询到他所需要的实时数据,数据源支持跨库并支持多种目标介质。这样的数据全局实时可视化如何实现?本文从需求分析开始,分享自动生成SQL功能开发中运用到的设计模式和数据结构算法设计。
在某些场景中,例如读取 compacted topic 或者输出(更新)聚合结果的时候,需要将 Kafka 消息记录的 key 当成主键处理,用来确定一条数据是应该作为插入、删除还是更新记录来处理。为了实现该功能,社区为 Kafka 专门新增了一个 upsert connector(upsert-kafka),该 connector 扩展自现有的 Kafka connector,工作在 upsert 模式(FLIP-149)下。新的 upsert-kafka connector 既可以作为 source 使用,也可以作为 sink 使用,并且提供了与现有的 kafka connector 相同的基本功能和持久性保证,因为两者之间复用了大部分代码。
大规模数据处理技术如果从MapReduce论文算起,已经前后跨越了十六年。我们先沿着时间线看一下大规模数据处理的重要技术和它们产生的年代。后面从MapReduce到Spark、Flink、Beam的演进特性来看大规模数据处理计算引擎应该具备什么样的能力。
Apache Kafka 是一个分布式消息发布订阅系统。它最初由 LinkedIn 公司基于独特的设计实现为一个分布式的提交日志系统,之后成为 Apache 项目的一部分。Kafka 系统快速、可扩展并且可持久化。它的分区、可复制和可容错等特性都是非常出色的。
部署Flink之前首先需要安装好JDK,可以选择8或11版本,我这里选择的是JDK11:
领取专属 10元无门槛券
手把手带您无忧上云